Ремонт компьютеров своими руками, настройка Windows! Компоненты на видеокарте


Основные компоненты видеокарты

Компьютеры Основные компоненты видеокарты

Количество просмотров публикации Основные компоненты видеокарты - 72

 Наименование параметра  Значение
Тема статьи: Основные компоненты видеокарты
Рубрика (тематическая категория) Компьютеры

Основными компонентами современной видеокарты являются:

· Video BIOS;

· набор микросхем;

· видеопамять;

· RAMDAC;

· разъемы подключения к шинœе и внешним устройствам.

Операции с изображением на экране монитора выполняются с помощью специальных команд. Набор таких команд помещается в постоянное запоминающее устройство (Flash-память), называемое Video BIOS. Современные видеокарты поддерживают также стандарт Plug&Play, в связи с этим в Video BIOS содержатся также сведения о модели, производителœе, и параметрах видеокарты.

Набор микросхем (chipset) определяет возможности видеокарты. Обычно в его состав входит 64-разрядный или 128-разрядный специализированный суперконвейерный и суперскалярный (см. разд. 1.3.3.4.4) процессор и набор аппаратных средств обработки видеоизображений в различных форматах, а также для обработки векторной графики. Наиболее мощные процессоры фактически являются и многопроцессорными, поскольку содержат несколько независимых процессоров (по одному для каждого конвейера). К сожалению, какого-либо стандарта на состав и параметры компонент набора микросхем не существует и в связи с этим у различных производителœей видеокарт эти наборы существенно отличаются не только по составу и функциональным возможностям, но и по качеству обработки изображений. Каждый из этих наборов имеет свои достоинства и недостатки, к тому же, технологии обработки видеоданных постоянно совершенствуются и в видеокартах разных производителœей всœе время улучшается обработка видеоданных (в особенности векторных), а также появляются новые возможности.

Видеопамять представляет собой память произвольного доступа (RAM). В видеокартах без графического ускорителя использовались те же модели динамической памяти, что в оперативной памяти (см. разд. 1.3.4.2.1), либо модели памяти, специально разработанные для хранения видеоданных, к примеру, VRAM (Video RAM), WRAM (Window RAM), SGRAM (Synchronous Graphics RAM) и MDRAM (Multi-bank RAM). Эти модели отличаются от моделœей оперативной памяти повышенной пропускной способностью, крайне важно й для быстрой обработки изображений. В новых моделях видеокарт (с ускорителœем) требования к объёму и быстродействию памяти существенно выросли, в связи с этим в видеокарте обычно используются модели памяти DDR SDRAM и DDR 2 SDRAM (см. разд. 1.3.4.2.1), либо специально разработанная для графических приложений графическая память SGDDR3 DRAM. Особенностью использования памяти в видеокартах является 128-битовая или 256-битовая шина данных между памятью и графическим процессором, которая способно быстро передавать большие объёмы данных.

В цифро-аналоговом преобразователœе RAM – RAMDAC (RAM Digital-Analogue Converter) цифровые данные из видеопамяти (коды цветов пикселœей) преобразуются в аналоговую форму и передаются на монитор. Размещено на реф.рфНекоторые видеокарты поддерживают также стандарт DVI и могут передавать цифровые данные из видеопамяти (в обход RAMDAC) прямо на монитор.

Разъемы видеокарты могут, помимо разъема для подключения монитора, включать также разъемы для ввода/вывода видеоизображений в различных телœевизионных форматах, подключения внешнего DVD-плеера и других устройств.

Основные компоненты видеокарты - понятие и виды. Классификация и особенности категории "Основные компоненты видеокарты" 2014, 2015.

referatwork.ru

Для чего нужна видеокарта, их виды, встроенный и дискретный видеоадаптер, устройство видеокарт

Компьютер выполняет множество сложных задач, запуская самые разные процессы и обрабатывая информацию. Видеокарта служит для обработки графической информации и последующего вывода получаемой картинки на монитор компьютера или экран ноутбука. Предлагаем вам подробнее разобраться с назначением и устройством современной видеокарты в нашей статье!

Что такое видеокарта и для чего она нужна

Видеокарта (её же называют видеоадаптером) представляет собой важный элемент компьютерной системы. В её состав могут входить собственные процессор, ОЗУ и система охлаждения. Информация, которая должна быть обработана видеокартой, отправляется с центрального процессора всего компьютера. Видеоадаптер обрабатывает её, а затем выводит цельную картинку на монитор. От параметров видеокарты зависит то, как хорошо и быстро будет грузиться изображение.

Отдельное видеоядро уже встроено на материнскую плату вашего компьютера или ноутбука. Изображение будет выводиться на экран и без дискретной мощной платы. Но это не значит, что отдельная видеокарта вообще не нужна. Без неё не обойтись, если вы работаете с графикой или часто играете в компьютерные игры. Производительность стандартного видеоядра слабенькая, для тяжёлой видео-артиллерии нужна целая плата со своими процессором и оперативкой.

Основными производителями видеокарт на сегодня являются компании Nvidia (серия видеокарт GeForce), AMD (видеоадаптеры под общим названием Radeon) и Intel. На программном уровне видеокарты работают с массовыми графическими ускорителями разных поколений версии Direct X. Начиная с Direct X 11 привязки видеочипа к определённому поколению ПО больше нет.

Какие бывают видеокарты

Видеокарты разделяют на два вида:

  1. Встроенная.
  2. Дискретная.

По названию "встроенная" сразу ясно, что речь идёт о видеочипе, уже встроенном в материнскую плату. Это базовая видеокарта, которая для работы использует ресурсы всей системы. То есть, видео обрабатывается центральным процессором, а временные файлы хранятся в оперативной памяти компьютера. Встроенной видеокарты хватает для работы, учёбы, просмотра фильмов и сериалов на компьютере.

Встроенная видеокарта

Дискретная видеокарта — это та самая отдельная плата со своими компонентами системы, которая устанавливается в отдельный слот на материнской плате. Дискретный видеоадаптер позволяет разгрузить основные компоненты компьютера, ведь всю графическую информацию он обрабатывает самостоятельно. Он не потребляет лишних ресурсов, работает практически полностью автономно. Профессионалам в области видео и графики, а также геймерам бывает очень сложно обойтись без дискретной видеокарты: картинка может тормозить, компьютер перегреваться, а работа в разных приложениях затрудняться из-за перегрузки процессора.

Устройство дискретной видеокарты

Современная дискретная видеокарта (а не видеоядро на материнской плате) состоит из следующих частей:

  • Графический процессор.
  • Видеопамять.
  • Цифро-аналоговый преобразователь.
  • Видеоконтроллер.
  • Постоянное запоминающее устройство (ПЗУ).
  • Система охлаждения.

Дискретная видеокарта

Вся обработка графики до вывода её на монитор происходит в графическом процессоре. Временные файлы хранятся в видеопамяти, а видеоконтроллер отвечает за правильную передачу информации на ЦАП. Преобразователь (ЦАП) из цифровой информации создаёт аналоговый сигнал, который и отправляется на устройство вывода (ваш монитор или телевизор). А вся базовая система платы хранится на видео-ПЗУ, постоянном запоминающем устройстве. И, чтобы видеокарта не перегревалась во время работы, на неё устанавливается собственная система охлаждения. Также на современной видеокарте установлено несколько разъёмов для подключения к разным телевизорам и мониторам.

ipkey.com.ua

Устройство и работа видеокарты

Подробности Категория: Статьи

1  История создания видеокарты

Одним из первых графических адаптеров для IBM PC стал MDA (Monochrome Display Adapter) в 1981 году. Он работал только в текстовом режиме с разрешением 80×25 символов (физически 720×350 точек) и поддерживал пять атрибутов текста: обычный, яркий, инверсный, подчёркнутый и мигающий. Никакой цветовой или графической информации он передавать не мог, и то, какого цвета будут буквы, определялось моделью использовавшегося монитора. Обычно они были чёрно-белыми, янтарными или изумрудными. Фирма Hercules в 1982 году выпустила дальнейшее развитие адаптера MDA, видеоадаптер HGC (Hercules Graphics Controller — графический адаптер Геркулес), который имел графическое разрешение 720×348 точек и поддерживал две графические страницы. Но он всё ещё не позволял работать с цветом.

Первой цветной видеокартой стала CGA (Color Graphics Adapter), выпущенная IBM и ставшая основой для последующих стандартов видеокарт. Она могла работать либо в текстовом режиме с разрешениями 40×25 и 80×25 (матрица символа — 8×8), либо в графическом с разрешениями 320×200 или 640×200. В текстовых режимах доступно 256 атрибутов символа — 16 цветов символа и 16 цветов фона (либо 8 цветов фона и атрибут мигания), в графическом режиме 320×200 было доступно четыре палитры по четыре цвета каждая, режим высокого разрешения 640×200 был монохромным. В развитие этой карты появился EGA (Enhanced Graphics Adapter) — улучшенный графический адаптер, с расширенной до 64 цветов палитрой, и промежуточным буфером. Было улучшено разрешение до 640×350, в результате добавился текстовый режим 80×43 при матрице символа 8×8. Для режима 80×25 использовалась большая матрица — 8×14, одновременно можно было использовать 16 цветов, цветовая палитра была расширена до 64 цветов. Графический режим так же позволял использовать при разрешении 640×350 16 цветов из палитры в 64 цвета. Был совместим с CGA и MDA.

Стоит заметить, что интерфейсы с монитором всех этих типов видеоадаптеров были цифровые, MDA и HGC передавали только светится или не светится точка и дополнительный сигнал яркости для атрибута текста «яркий», аналогично CGA по трём каналам (красный, зелёный, синий) передавал основной видеосигнал, и мог дополнительно передавать сигнал яркости (всего получалось 16 цветов), EGA имел по две линии передачи на каждый из основных цветов, то есть каждый основной цвет мог отображаться с полной яркостью, 2/3, или 1/3 от полной яркости, что и давало в сумме максимум 64 цвета.

В ранних моделях компьютеров от IBM PS/2, появляется новый графический адаптер MCGA (Multicolor Graphics Adapter — многоцветный графический адаптер). Текстовое разрешение было поднято до 640x400, что позволило использовать режим 80x50 при матрице 8x8, а для режима 80x25 использовать матрицу 8x16. Количество цветов увеличено до 262144 (64 уровня яркости по каждому цвету), для совместимости с EGA в текстовых режимах была введена таблица цветов, через которую выполнялось преобразование 64-цветного пространства EGA в цветовое пространство MCGA. Появился режим 320x200x256, где каждый пиксел на экране кодировался соответствующим байтом в видеопамяти, никаких битовых плоскостей не было, соответственно с EGA осталась совместимость только по текстовым режимам, совместимость с CGA была полная. Из-за огромного количества яркостей основных цветов возникла необходимость использования уже аналогового цветового сигнала, частота строчной развертки составляла уже 31,5 KГц.

Потом IBM пошла ещё дальше и сделала VGA (Video Graphics Array — графический видео массив), это расширение MCGA совместимое с EGA и введённое в средних моделях PS/2. Это фактический стандарт видеоадаптера с конца 80-х годов. Добавлены текстовое разрешение 720x400 для эмуляции MDA и графический режим 640x480, с доступом через битовые плоскости. Режим 640x480 замечателен тем, что в нём используется квадратный пиксел, то есть соотношение числа пикселов по горизонтали и вертикали совпадает со стандартным соотношением сторон экрана — 4:3. Дальше появился IBM 8514/a с разрешениями 640x480x256 и 1024x768x256, и IBM XGA с текстовым режимом 132x25 (1056x400) и увеличенной глубиной цвета (640x480x65K).

С 1991 года появилось понятие SVGA (Super VGA — «сверх» VGA) — расширение VGA с добавлением более высоких режимов и дополнительного сервиса, например возможности поставить произвольную частоту кадров. Число одновременно отображаемых цветов увеличивается до 65536 (High Color, 16 бит) и 16777216 (True Color, 24 бита), появляются дополнительные текстовые режимы. Из сервисных функций появляется поддержка VBE (VESA BIOS Extention — расширение BIOS стандарта VESA). SVGA воспринимается как фактический стандарт видеоадаптера где-то с середины 1992 года, после принятия ассоциацией VESA стандарта VBE версии 1.0. До того момента практически все видеоадаптеры SVGA были несовместимы между собой.

Графический пользовательский интерфейс, появившийся во многих операционных системах, стимулировал новый этап развития видеоадаптеров. Появляется понятие «графический ускоритель» (graphics accelerator). Это видеоадаптеры, которые производят выполнение некоторых графических функций на аппаратном уровне. К числу этих функций относятся, перемещение больших блоков изображения из одного участка экрана в другой (например при перемещении окна), заливка участков изображения, рисование линий, дуг, шрифтов, поддержка аппаратного курсора и т. п. Прямым толчком к развитию столь специализированного устройства явилось то, что графический пользовательский интерфейс несомненно удобен, но его использование требует от центрального процессора немалых вычислительных ресурсов, и современный графический ускоритель как раз и призван снять с него львиную долю вычислений по окончательному выводу изображения на экран.

Пример домашнего компьютера не-IBM - ZX Spectrum, имеет свою историю развития видеорежимов.

2 Устройство видеокарты

Современная видеокарта состоит из следующих частей:

- графический процессор (Graphics processing unit — графическое процессорное устройство) — занимается расчётами выводимого изображения, освобождая от этой обязанности центральный процессор, производит расчёты для обработки команд трёхмерной графики. Является основой графической платы, именно от него зависят быстродействие и возможности всего устройства. Современные графические процессоры по сложности мало чем уступают центральному процессору компьютера, и зачастую превосходят его как по числу транзисторов, так и по вычислительной мощности, благодаря большому числу универсальных вычислительных блоков. Однако, архитектура GPU прошлого поколения обычно предполагает наличие нескольких блоков обработки информации, а именно: блок обработки 2D-графики, блок обработки 3D-графики, в свою очередь, обычно разделяющийся на геометрическое ядро (плюс кэш вершин) и блок растеризации (плюс кэш текстур) и др.

- видеоконтроллер — отвечает за формирование изображения в видеопамяти, даёт команды RAMDAC на формирование сигналов развёртки для монитора и осуществляет обработку запросов центрального процессора. Кроме этого, обычно присутствуют контроллер внешней шины данных (например, PCI или AGP), контроллер внутренней шины данных и контроллер видеопамяти. Ширина внутренней шины и шины видеопамяти обычно больше, чем внешней (64, 128 или 256 разрядов против 16 или 32), во многие видеоконтроллеры встраивается ещё и RAMDAC. Современные графические адаптеры (ATI, nVidia) обычно имеют не менее двух видеоконтроллеров, работающих независимо друг от друга и управляющих одновременно одним или несколькими дисплеями каждый.

- видеопамять — выполняет роль кадрового буфера, в котором хранится изображение, генерируемое и постоянно изменяемое графическим процессором и выводимое на экран монитора (или нескольких мониторов). В видеопамяти хранятся также промежуточные невидимые на экране элементы изображения и другие данные. Видеопамять бывает нескольких типов, различающихся по скорости доступа и рабочей частоте. Современные видеокарты комплектуются памятью типа DDR, DDR2, GDDR3, GDDR4 и GDDR5. Следует также иметь в виду, что помимо видеопамяти, находящейся на видеокарте, современные графические процессоры обычно используют в своей работе часть общей системной памяти компьютера, прямой доступ к которой организуется драйвером видеоадаптера через шину AGP или PCIE. В случае использования архитектуры UMA в качестве видеопамяти используется часть системной памяти компьютера.

- цифро-аналоговый преобразователь (ЦАП, RAMDAC — Random Access Memory Digital-to-Analog Converter) — служит для преобразования изображения, формируемого видеоконтроллером, в уровни интенсивности цвета, подаваемые на аналоговый монитор. Возможный диапазон цветности изображения определяется только параметрами RAMDAC. Чаще всего RAMDAC имеет четыре основных блока — три цифроаналоговых преобразователя, по одному на каждый цветовой канал (красный, зелёный, синий, RGB), и SRAM для хранения данных о гамма-коррекции. Большинство ЦАП имеют разрядность 8 бит на канал — получается по 256 уровней яркости на каждый основной цвет, что в сумме дает 16,7 млн цветов (а за счёт гамма-коррекции есть возможность отображать исходные 16,7 млн цветов в гораздо большее цветовое пространство). Некоторые RAMDAC имеют разрядность по каждому каналу 10 бит (1024 уровня яркости), что позволяет сразу отображать более 1 млрд цветов, но эта возможность практически не используется. Для поддержки второго монитора часто устанавливают второй ЦАП. Стоит отметить, что мониторы и видеопроекторы, подключаемые к цифровому DVI выходу видеокарты, для преобразования потока цифровых данных используют собственные цифроаналоговые преобразователи и от характеристик ЦАП видеокарты не зависят.

- видео-ПЗУ (Video ROM) — постоянное запоминающее устройство, в которое записаны видео-BIOS, экранные шрифты, служебные таблицы и т. п. ПЗУ не используется видеоконтроллером напрямую — к нему обращается только центральный процессор. Хранящийся в ПЗУ видео-BIOS обеспечивает инициализацию и работу видеокарты до загрузки основной операционной системы, а также содержит системные данные, которые могут читаться и интерпретироваться видеодрайвером в процессе работы (в зависимости от применяемого метода разделения ответственности между драйвером и BIOS). На многих современных картах устанавливаются электрически перепрограммируемые ПЗУ (EEPROM, Flash ROM), допускающие перезапись видео-BIOS самим пользователем при помощи специальной программы.

- система охлаждения — предназначена для сохранения температурного режима видеопроцессора и видеопамяти в допустимых пределах.

Правильная и полнофункциональная работа современного графического адаптера обеспечивается с помощью видеодрайвера — специального программного обеспечения, поставляемого производителем видеокарты и загружаемого в процессе запуска операционной системы. Видеодрайвер выполняет функции интерфейса между системой с запущенными в ней приложениями и видеоадаптером. Так же как и видео-BIOS, видеодрайвер организует и программно контролирует работу всех частей видеоадаптера через специальные регистры управления, доступ к которым происходит через соответствующую шину.

3 Функциональная схема видеокарты

Обязательным элементом видеокарты является контроллер монитора, в задачу которого входит согласованное формирование сигналов сканирования видеопамяти (адрес и стробы чтения) и сигналов вертикальной и горизонтальной синхронизации монитора. Контроллер монитора должен обеспечивать требуемые частоты развертки и режимы сканирования видеопамяти, которые зависят от режима отображения (графический или текстовый) и организации видеопамяти. Опорной частотой для работы контроллера является частота вывода пикселов в графических режимах или точек разложения символов в текстовом режиме.

Видеопамять является специальной областью памяти, из которой контроллер монитора организует циклическое чтение содержимого для регенерации изображения. Первоначально для видеопамяти в карте распределения памяти РС была выделена область адресов A0000h-BFFFFh, доступные любому процессору х86. Для увеличения объема памяти (для VGA и SVGA) пришлось

Риснок 1.1 – Функциональная схема видеокарты

применять технику переключения банков памяти. Современные графические адаптеры имеют возможность переадресации видеопамяти в область старших адресов (свыше 16 Мбайт), что позволяет в защищенном режиме процессора работать с цельными образами экранов. На графических адаптерах существует и архитектура унифицированной памяти UMA. При таком подходе под видеобуфер выделяется область системного ОЗУ. Но это приводит к снижению производительности как графической подсистемы, так и компьютера в целом. Для повышения производительности служит не просто выделение видеопамяти, но и применение в ней микросхем со специальной архитектурой - VRAM, WRAM, MDRAM, RDRAM, SGRAM.

Контроллер атрибутов управляет трактовкой цветовой информации, хранящейся в видеопамяти. В текстовом режиме он обрабатывает информацию из байт атрибутов знакомест, а в графическом - бит текущего выводимого пиксела. Контроллер атрибутов позволяет увязать объем хранимой цветовой информации с возможностями монитора. В состав контроллера атрибутов входят регистры палитр, которые служат для преобразования цветов, закодированных битами видеопамяти, в реальные цвета на экране. С появлением адаптеров, способных более 256 цветов, на видеокарту их монитора перенесли цифроаналоговые преобразователи (ЦАП) сигналов базисных цветов. Объединение ЦАП с регистрами палитр в настоящее время исполняется в виде микросхем RAMDAC (цифро-аналоговый преобразователь). Микросхемы RAMDAC характеризуются разрядностью преобразователей, которая может доходить до 8 бит на цвет, и предельной частотой выборки точек (DotCLK), с которой они способны работать.

Графический контроллер является средством повышения производительности программного построения образов изображений в видеопамяти. В адаптерах EGA и VGA функции графического контроллера реализованы аппаратными средствами специализированных микросхем. Адаптеры EGA и VGA имеют четыре 8-ми битных регистра-защелки, в которых фиксируются данные из соответствующих им цветовых слоев при выполнении любой операции чтения видеопамяти. В последующих операциях записи в формировании данных для каждого слоя могут принимать участие данные от процессора и данные из регистров-защелок соответствующих слоев. Регистр битовой маски позволяет побитно управлять источником записываемых данных: если бит регистра маски имеет нулевое значение, то в видеопамять этот бит во всех слоях будет записан из регистра-защелки. Данные от процессора будут поступать только для бит с единичным значением маски. При чтении графический контроллер может задавать номер читаемого слоя. В современных адаптерах функции графического контроллера, существенно расширенные по сравнению с EGA и VGA, выполняются встроенным микропроцессором - графическим акселератором.

Синхронизатор позволяет синхронизировать циклы обращения процессора к видеопамяти с процессом регенерации изображения. От внутреннего генератора вырабатывается частота вывода пикселов DotClock, относительно которой строятся все временные последовательности сканирования видеопамяти, формирования видеосигналов и синхронизации монитора. В то же время процессор обращается к видеопамяти асинхронно относительно процесса регенерации. В задачу синхронизатора входит согласование этих асинхронных процессов.

Внутренняя шина адаптера предназначена для высокопроизводительного обмена данными между видеопамятью, графическим акселератором и внешним интерфейсом. Типовая разрядность канала данных у этой шины 64/128 бит. Однако реально используемая разрядность может оказаться меньшей, если установлены не все предусмотренные микросхемы видеопамяти.

Блок внешнего интерфейса связывает адаптер с одной из шин компьютера. Раньше для графических адаптеров использовали шину ISA (8/16 бит). Современные графические адаптеры используют в основном высокопроизводительные шины, такие как PCI и еще более производительный канал AGP.

Блок интерфейса монитора формирует выходные сигналы соответствующего типа (RGB-TTL, RGB-Analog и т.д.). Этот же блок отвечает за диалог с монитором: в простейшем случае - чтение бит идентификации, а в более сложном - обмен данными по каналу DDC. Идентификация типа подключенного монитора VGA может производиться и по уровню видеосигнала на выходах красного или синего цвета: монитор имеет терминаторы (75 Ом) на каждом из аналоговых входов. Такая нагрузка при подключении снижает напряжение выходного сигнала. У монохромного монитора используется только канал зеленого цвета - линии красного и синего остаются без нагрузки.

Модуль расширения BIOS хранит код драйверов видеосервиса (INT 10h) и таблицы знакогенераторов. Этот модуль обеспечивает возможность установки любой карты, не задумываясь о проблемах программной совместимости. Модуль расширения получает управление для инициализации графического адаптера почти в самом начале POST. Модуль имеет начальный адрес C0000h и его размер зависит от типа адаптера. Для повышения производительности видеопостроений применяют теневую память (Video BIOS Shadowing) или кэширование (Video BIOS Caching). Для графических адаптеров, интегрированных в системную плату, программная поддержка также встроена в системную BIOS.

4      Характеристики видеокарты и их интерфейс

Ширина шины памяти, измеряется в битах — количество бит информации, передаваемой за такт. Важный параметр в производительности карты.

Объём видеопамяти, измеряется в мегабайтах — объём собственной оперативной памяти видеокарты.

Видеокарты, интегрированные в набор системной логики материнской платы или являющиеся частью ЦПУ, обычно не имеют собственной видеопамяти и используют для своих нужд часть оперативной памяти компьютера.

Частоты ядра и памяти — измеряются в мегагерцах, чем больше, тем быстрее видеокарта будет обрабатывать информацию.

Текстурная и пиксельная скорость заполнения, измеряется в млн. пикселов в секунду, показывает количество выводимой информации в единицу времени.

Выводы карты — видеоадаптеры MDA, Hercules, CGA и EGA оснащались 9-контактным разьемом типа D-Sub. Изредка также присутствовал коаксиальный разьем Composite Video, позволяющий вывести черно-белое изображение на телевизионный приемник или монитор, оснащенный НЧ-видеовходом. Видеоадаптеры VGA и более поздние обычно имели всего один разъём VGA (15-контактный D-Sub). Изредка ранние версии VGA-адаптеров имели также разьем предыдущего поколения (9-контактный) для совместимости со старыми мониторами. Выбор рабочего выхода задавался переключателями на плате видеоадаптера. В настоящее время платы оснащают разъёмами DVI или HDMI, либо Display Port в количестве от одного до трех. Некоторые видеокарты ATi последнего поколения оснащаются шестью видеовыходами. Порты DVI и HDMI являются эволюционными стадиями развития стандарта передачи видеосигнала, поэтому для соединения устройств с этими типами портов возможно использование переходников. Порт DVI бывает двух разновидностей. DVI-I также включает аналоговые сигналы, позволяющие подключить монитор через переходник на разьем D-SUB. DVI-D не позволяет этого сделать. Dispay Port позволяет подключать до четырёх устройств, в том числе акустические системы, USB-концентраторы и иные устройства ввода-вывода. На видеокарте также возможно размещение композитных и S-Video видеовыходов и видеовходов (обозначаются, как ViVo) (Рис. 1.2).

Устройство видеокарты

Рисунок 1.2 – Разъемы: 9-контактный разъём TV-Out, DVI и D-Sub

Первое препятствие к повышению быстродействия видеосистемы — это интерфейс передачи данных, к которому подключён видеоадаптер. Как бы ни был быстр процессор видеоадаптера, большая часть его возможностей останется незадействованной, если не будут обеспечены соответствующие каналы обмена информацией между ним, центральным процессором, оперативной памятью компьютера и дополнительными видеоустройствами. Основным каналом передачи данных является, конечно, интерфейсная шина материнской платы, через которую обеспечивается обмен данными с центральным процессором и оперативной памятью. Самой первой шиной использовавшейся в IBM PC была XT-Bus, она имела разрядность 8 бит данных и 20 бит адреса и работала на частоте 4,77 МГц. Далее появилась шина ISA (Industry Standart Architecture — архитектура промышленного стандарта), соответственно она имела разрядность 16/24 бит и работала на частоте 8 МГц. Пиковая пропускная способность составляла чуть больше 5,5 МиБ/с. Этого более чем хватало для отображения текстовой информации и игр с шестнадцатицветной графикой. Дальнейшим рывком явилось появление шины MCA (Micro Channel Architecture) в новой серии компьютеров PS/2 фирмы IBM. Она уже имела разрядность 32/32 бит и пиковую пропускную способность 40 МиБ/с. Но то обстоятельство, что архитектура MCI являлась закрытой (собственностью IBM), побудило остальных производителей искать иные пути увеличения пропускной способности основного канала доступа к видеоадаптеру. И вот, с появлением процессоров серии 486, было предложено использовать для подключения периферийных устройств локальную шину самого процессора, в результате родилась VLB (VESA Local Bus — локальная шина стандарта VESA). Работая на внешней тактовой частоте процессора, которая составляла от 25 МГц до 50 МГц, и имея разрядность 32 бит, шина VLB обеспечивала пиковую пропускную способность около 130 МиБ/с. Этого уже было более чем достаточно для всех существовавших приложений, помимо этого возможность использования её не только для видеоадаптеров, наличие трёх слотов подключения и обеспечение обратной совместимости с ISA (VLB представляет собой просто ещё один 116 контактный разъём за слотом ISA) гарантировали ей достаточно долгую жизнь и поддержку многими производителями чипсетов для материнских плат, и периферийных устройств, даже несмотря на то, что при частотах 40 МГц и 50 МГц обеспечить работу даже двух устройств подключенных к ней представлялось проблематичным из-за чрезмерно высокой нагрузки на каскады центрального процессора (ведь большинство управляющих цепей шло с VLB на процессор напрямую, безо всякой буферизации). И всё-таки, с учётом того, что не только видеоадаптер стал требовать высокую скорость обмена информацией, и явной невозможности подключения к VLB всех устройств (и необходимостью наличия межплатформенного решения, не ограничивающегося только PC), была разработана шина PCI (Periferal Component Interconnect — объединение внешних компонентов) появившаяся, в первую очередь, на материнских платах для процессоров Pentium. С точки зрения производительности на платформе PC всё осталось по-прежнему — при тактовой частоте шины 33 МГц и разрядности 32/32 бит она обеспечивала пиковую пропускную способность 133 МиБ/с — столько же, сколько и VLB. Однако она была удобнее и в конце-концов вытеснила шину VLB и на материнских платах для процессоров класса 486.

С появлением процессоров Intel Pentium II, и серьёзной заявкой PC на принадлежность к рынку высокопроизводительных рабочих станций, а так же с появлением 3D-игр со сложной графикой, стало ясно, что пропускной способности PCI в том виде, в каком она существовала на платформе PC (обычно частота 33 МГц и разрядность 32 бит), скоро не хватит на удовлетворение запросов системы. Поэтому фирма Intel решила сделать отдельную шину для графической подсистемы, несколько модернизировала шину PCI, обеспечила новой получившейся шине отдельный доступ к памяти с поддержкой некоторых специфических запросов видеоадаптеров, и назвала это AGP (Accelerated Graphics Port — ускоренный графический порт). Разрядность шины AGP составляет 32 бит, рабочая частота 66 МГц. Первая версия разьема поддерживала режимы передачи данных 1x и 2x, вторая - 4x, третья - 8x. В этих режимах за один такт передаются соответственно одно, два, четыре или восемь 32-разрядных слов. Версии AGP не всегда были совместимы между собой в связи с использованием различных напряжений питания в разных версиях. Для предотвращения повреждения оборудования использовался ключ в разьеме. Пиковая пропускная способность в режиме 1x — 266 МиБ/с. Выпуск видеоадаптеров на базе шинах PCI и AGP на настоящий момент ничтожно мал, так как шина AGP перестала удовлетворять современным требованиям для мощности новых ПК, и, кроме того, не может обеспечить необходимую мощность питания. Для решения этих проблем создано расширение шины PCI — E — PCI Express версий 1.0 и 2.0, это последовательный, в отличие от AGP, интерфейс, его пропускная способность может достигать нескольких десятков ГБ/с. На данный момент произошёл практически полный отказ от шины AGP в пользу PCI Express. Однако стоит отметить, что некоторые производители до сих предлагают достаточно современные по своей конструкции видеоплаты с интерфейсами PCI и AGP — во многих случаях это достаточно простой путь резко повысить производительность морально устаревшего ПК в некоторых графических задачах.

5  Видеопамять

Кроме шины данных, второе узкое место любого видеоадаптера — это пропускная способность (англ. bandwidth) памяти самого видеоадаптера. Причём, изначально проблема возникла даже не столько из-за скорости обработки видеоданных (это сейчас часто стоит проблема информационного «голода» видеоконтроллера, когда он данные обрабатывает быстрее, чем успевает их читать/писать из/в видеопамять), сколько из-за необходимости доступа к ним со стороны видеопроцессора, центрального процессора и RAMDAC’а. Дело в том, что при высоких разрешениях и большой глубине цвета для отображения страницы экрана на мониторе необходимо прочитать все эти данные из видеопамяти и преобразовать в аналоговый сигнал, который и пойдёт на монитор, столько раз в секунду, сколько кадров в секунду показывает монитор. Возьмём объём одной страницы экрана при разрешении 1024x768 точек и глубине цвета 24 бит (True Color), это составляет 2,25 МиБ. При частоте кадров 75 Гц необходимо считывать эту страницу из памяти видеоадаптера 75 раз в секунду (считываемые пикселы передаются в RAMDAC и он преобразовывает цифровые данные о цвете пиксела в аналоговый сигнал, поступающий на монитор), причём, ни задержаться, ни пропустить пиксел нельзя, следовательно, номинально потребная пропускная способность видеопамяти для данного разрешения составляет приблизительно 170 МиБ/с, и это без учёта того, что необходимо и самому видеоконтроллеру писать и читать данные из этой памяти. Для разрешения 1600x1200x32 бит при той же частоте кадров 75 Гц, номинально потребная пропускная составляет уже 550 МиБ/с, для сравнения, процессор Pentium-2 имел пиковую скорость работы с памятью 528 МиБ/с. Проблему можно было решать двояко — либо использовать специальные типы памяти, которые позволяют одновременно двум устройствам читать из неё, либо ставить очень быструю память. О типах памяти и пойдёт речь ниже.

FPM DRAM (Fast Page Mode Dynamic RAM — динамическое ОЗУ с быстрым страничным доступом) — основной тип видеопамяти, идентичный используемой в системных платах. Использует асинхронный доступ, при котором управляющие сигналы не привязаны жёстко к тактовой частоте системы. Активно применялся примерно до 1996 г.

VRAM (Video RAM — видео ОЗУ) — так называемая двухпортовая DRAM. Этот тип памяти обеспечивает доступ к данным со стороны сразу двух устройств, то есть есть возможность одновременно писать данные в какую-либо ячейку памяти, и одновременно с этим читать данные из какой-нибудь соседней ячейки. За счёт этого позволяет совмещать во времени вывод изображения на экран и его обработку в видеопамяти, что сокращает задержки при доступе и увеличивает скорость работы. То есть RAMDAC может свободно выводить на экран монитора раз за разом экранный буфер ничуть не мешая видеопроцессору осуществлять какие-либо манипуляции с данными. Но это всё та же DRAM и скорость у неё не слишком высокая.

WRAM (Window RAM) — вариант VRAM, с увеличенной на ~25 % пропускной способностью и поддержкой некоторых часто применяемых функций, таких как отрисовка шрифтов, перемещение блоков изображения и т. п. Применяется практически только на акселераторах фирмы Matrox и Number Nine, поскольку требует специальных методов доступа и обработки данных. Наличие всего одного производителя данного типа памяти (Samsung) сильно сократило возможности её использования. Видеоадаптеры, построенные с использованием данного типа памяти, не имеют тенденции к падению производительности при установке больших разрешений и частот обновления экрана, на однопортовой же памяти в таких случаях RAMDAC всё большее время занимает шину доступа к видеопамяти и производительность видеоадаптера может сильно упасть.

EDO DRAM (Extended Data Out DRAM — динамическое ОЗУ с расширенным временем удержания данных на выходе) — тип памяти с элементами конвейеризации, позволяющий несколько ускорить обмен блоками данных с видеопамятью приблизительно на 25 %.

SDRAM(Synchronous Dynamic RAM — синхронное динамическое ОЗУ) пришёл на замену EDO DRAM и других асинхронных однопортовых типов памяти. После того, как произведено первое чтение из памяти или первая запись в память, последующие операции чтения или записи происходят с нулевыми задержками. Этим достигается максимально возможная скорость чтения и записи данных.

DDR SDRAM (Double Data Rate) — вариант SDRAM с передачей данных по двум срезам сигнала, получаем в результате удвоение скорости работы. Дальнейшее развитие пока происходит в виде очередного уплотнения числа пакетов в одном такте шины — DDR2 SDRAM (GDDR2), DDR3 SDRAM (GDDR3) и т. д.

SGRAM (Synchronous Graphics RAM — синхронное графическое ОЗУ) вариант DRAM с синхронным доступом. В принципе, работа SGRAM полностью аналогична SDRAM, но дополнительно поддерживаются ещё некоторые специфические функции, типа блоковой и масочной записи. В отличие от VRAM и WRAM, SGRAM является однопортовой, однако может открывать две страницы памяти как одну, эмулируя двухпортовость других типов видеопамяти.

MDRAM (Multibank DRAM — многобанковое ОЗУ) — вариант DRAM, разработанный фирмой MoSys, организованный в виде множества независимых банков объёмом по 32 КиБ каждый, работающих в конвейерном режиме.

RDRAM (RAMBus DRAM) память использующая специальный канал передачи данных (Rambus Channel), представляющий собой шину данных шириной в один байт. По этому каналу удаётся передавать информацию очень большими потоками, наивысшая скорость передачи данных для одного канала на сегодняшний момент составляет 1600 МиБ/с (частота 800 МГц, данные передаются по обоим срезам импульса). На один такой канал можно подключить несколько чипов памяти. Контроллер этой памяти работает с одним каналом Rambus, на одной микросхеме логики можно разместить четыре таких контроллера, значит теоретически можно поддерживать до 4 таких каналов, обеспечивая максимальную пропускную способность в 6,4 ГиБ/с. Минус этой памяти — нужно читать информацию большими блоками, иначе её производительность резко падает.

Общий вид видеокарты изображен на рисунке 1.4.

Рисунок 1.4 – Общий вид видеокарты на базе чипа NVidia GT218

Схема видеокарты изображена на рисунке 1.5.

 

схема видеокарты

Рисунок 1.5 - Схема видеокарты

 Недостатки видеокарт

Основным недостатком видеокарт является перегрев.

Перегрев видеокарт случается, когда они работают в закрытом, недостаточно проветриваемом корпусе. Современные видеокарты имеют достаточно большую мощность, поэтому сильно нагреваются. Этому способствует маленький корпус компьютера, набитый различными элементами, здесь есть большая вероятность, что видеокарта, когда-нибудь сгорит от перегрева.

Признаки перегрева видеокарты: происходят «глюки» системы, неправильное изображение цвета, появляются полосы, точки на экране, через несколько минут после начала интенсивной загрузки ускорителя. Последствия перегрева: потеря контакта в схеме видеокарты, вылет питающих узлов, высыхание электролитов, неисправности памяти. Такие же последствия возможны из-за плохого питания или разгона.

Если перегрев видеокарты длительный, то происходит высыхание электролитических конденсаторов на печатной плате видеокарты. Бывает, что производители экономят, и ставят конденсаторы, не предназначенные для работы при высоких температурах, в результате этого электролиты высыхают, что и становится причиной полной неработоспособности карты. Часто происходит то, что в схеме платы, нарушаются электрические контакты. Эта неисправность является самой простой и легко исправляемой.

Для того, чтобы устранить этот недостаток воспользуемся одним из методов охлаждения ПК. На современных компьютерах изготовитель устанавливает на видеокартах либо пассивное охлаждение, в виде радиатора или производит дополнительный обдув платы видеокарты вентилятором. Мы воспользуемся вторым способом, хотя при этом увеличится уровень шума, создаваемого дополнительным вентилятором.

radiofanatic.ru

Что нужно знать о видеокартах?

Изучаем видеокарту.

В этой стать вы узнаете Что нужно знать о видеокартах, маркеровке видеокарт наиболее популярных производителей а так же какие интерфейсы у видеокарт какое охлаждение,графический процессор,видеопамять и многое другое. Статья также будет полезна при покупки видеокарты.Видеокарта

Видеокарта.

Видеокарта обычно представляет собой дополнительную плату, которая вставляется в слот материнской платы вашего ПК, что такое материнская плата можно прочитать здесь.  Самые дешёвые графические решения, от которых требуется только 2D или работа под Windows, часто интегрированы в чипсет материнской платы. Современные видеокарты могут похвастаться впечатляющим списком возможностей и спецификаций, которые год от года всё увеличиваются.

Маркировка Nvidia

Компания Nvidia решила в новом году изменить маркировку видеокарт. Прежде всего будет изменена маркировка видеокарт девятой серии - новые видеокарты будут обозначаться как G1хх. Серия G1хх будет закреплена за бюджетными и среднеклассовыми видеокартами и картами среднего класса. Nvidia G130 придет на замену видеокартам 9600 GSO и 8800 GS, которые уже сняты с производства, а видеокарты Nvidia G100 и G120 будут выпущены взамен производящимся в настоящее время моделям 9400 GT и 9500 GT соответственно. Кроме того, Nvidia планирует выпустить в этом году новые видеокарты верхней ценовой категории, которые будут маркироваться как GTX2xx.

Урезанные варианты на базе графического чипа NVIDIA - LE или ХТ; такие системы имеют уменьшенную тактовую частоту видеопроцессора. Сокращение ТС (Turbo Cache) у NVIDIA обозначает еще более медленное решение, которое использует оперативную память компьютера.

Что означает буква G в названии видеокарт NVIDIA

Буква G в названии видеокарт NVIDIA означает, что карта относится к низшему ценовому сегменту, GT - к среднему, GTX - к высшему.

Маркировка ATI

В обозначениях модели видеоплаты следует обращать внимание на буквенные сокращения в конце: урезанные варианты на базе графического чипа ATI обозначаются буквами СЕ или XL; такие системы имеют уменьшенную тактовую частоту видеопроцессора. Сокращение НМ (Hyper Memory) у ATI обозначает еще более медленное решение, которое использует оперативную память компьютера.

Маркировка видеоплат MSI

Графические платы Microstar имеют маркировку вида NX8800GTX-72D768E-HD-OC.

Первые два символа NX или RX указывают на разработчика графического процессора (NVIDIA или ATI). Далее идет информация о модели GPU - 8800GTX или 2900XT. После тире - описание видеовходов/выходов, объема памяти, системы охлаждения и внешней шины. M - интерфейс HDMI, T - ТВ-выход, V - видеовход (VIVO), D - один выход DVI, 2D - два выхода DVI, цифры - объем видеопамяти, E - интерфейс PCI Express (если буквы нет, то плата имеет интерфейс AGP), H - система пассивного охлаждения радиаторного типа, Z - система пассивного охлаждения радиаторного типа с применением тепловых трубок, HD - поддержка HDCP. Символы OC в конце означают, что плата имеет повыешенные частоты по сравнению с рекомендованными разработчиком процессора.

Маркировка видеоплат ASUS

Графические платы ASUS имеют маркировку типа EAh3900XT/HTVDI/512M. Первый символ означает тип интерфейса: E - PCI Express, при AGP буква отсутствует. Далее указан тип графического интерфейса, например, h3900XT или 8600GT. После первого "/" следует информация о входах/выходах видеоплаты: T - аналоговый ТВ-выход, D - DVI-выход без HDCP 1.1, V - аналоговый видеовход, H - аналоговый HDTV-выход, R - 3D-очки, I - HDMI, P - DVI-выход с поддержкой HDCP 1.1. После второго "/" указана информация о видеопамяти (512М - 512 Мбайт)

Маркировка видеоплат Gigabyte

Графические платы Gigabyte имеют маркировку вида GV-NX88X768H-RH. Первые буквы GV указывают на производителя (Gigabyte). Следующая буква указывает на разработчика графического процессора: N - NVIDIA, R - ATI. Буква X указывает, что плата обладает интерфейсом PCI Express. Следующие несколько символов содержат информацию о названии графического процессора видеоплаты. Например, 88X означает, что плата выполнена на базе GPU GeForce 8800 GTX, 85T - GeForce 8500GT, 155 - Radeon X1550, 29T - Radeon HD 2900XT. После названия графического процессора может следовать информация об использовании технологий TurboCache и HyperMemory - TC или HM. Следующие две-три цифры - информация об объеме видеопамяти (в нашем случае 768). Далее идет информация о видеовходах и видеовыходах: D - DVI-выход, V - видеовход и ТВ-выход (VIVO), H - поддержка HDCP.

Маркировка видеоплат Leadtek

Платы компании Leadtek имеют маркировку вида WinFast PX8800 GTX TDH. WinFast означает принадлежность к линейке устройств Leadtek. PX - интерфейс PCI Express, A - интерфейс AGP. Иногда перед символами PX можно встретить слово Duo, означающее наличие двух графических процессоров на одной плате. Далее следует название графического процессора: 8800 GTX - GeForce 8800 GTX. Далее идет информация о входах/выходах. Символ T - ТВ-выход, D - DVI-выход, H - поддержка HDTV, myVIVO - наличие видеовхода. Также может содержаться информация об объеме и типе памяти. Слово Extreme в конце названия обозначает, что плата работает на повышенных частотах.

CrossFire и SLI

В чем отличие технологии CrossFire от SLI в плане возможности соединения двух разных карт? Технология SLI позволяет использовать вычислительный потенциал двух видеокарт только в том случае, если они полностью одинаковые. 

Видеокарта вашего ПК

CrossFire в этом свете выгодно отличается от технологии компании NVIDIA: в паре можно использовать видеокарты разных модификаций, главное, чтобы они были из одной серии.

Выходы

После установки видеокарты в ваш ПК на задней панели корпуса можно будет обнаружить соответствующие разъёмы. Именно к ним и подключается дисплей. Многие видеокарты дают несколько (два) выходов, поэтому одновременно можно пользоваться несколькими дисплеями. Существуют разные интерфейсы дисплеев, но, в целом, их подразделяют на цифровые и аналоговые.

установки видеокарты в ваш ПК Именно здесь располагаются выходы видеокарты. Обратите внимание, что слотовая панель практически каждой карты расширения доступна снаружи корпуса ПК. Поэтому на ней и располагаются все нужные входы и выходы.

Компьютер - это цифровая машина, поэтому цифровой формат для компьютера является "родным", его лучше использовать и для подключения монитора к видеокарте. Современные дисплеи прошли долгий путь развития от первых электронно-лучевых трубок (ЭЛТ) до жидкокристаллических дисплеев (ЖК). ЭЛТ-мониторы по своей природе аналоговые, поэтому для них цифровой сигнал превращается в аналоговый с помощью цифро-аналогового преобразователя (ЦАП), который размещён на видеокарте. С появлением жидкокристаллических дисплеев потребность в ЦАП исчезла, но этот компонент всё равно присутствует на случай подключения аналоговых ЭЛТ-мониторов.

Разъём, предназначенный для вывода аналогового сигнала, называют VGA или D-Sub 15. причём качество такого сигнала может отличаться от одной видеокарты к другой. Дорогие видеокарты используют качественные компоненты, поэтому дают ясную и чёткую картинку даже на высоких разрешениях.Интерфейс VGA был стандартом до появления цифрового интерфейса DVI (Digital Visual Interface), но он популярен и до сих пор. Выходы D-Sub VGA по-прежнему используются для подключения большинства ЭЛТ-мониторов. Их также можно встретить на большинстве цифровых проекторов и даже на HDTV-телевизорах. Впрочем, для цифровых мониторов мы всё же рекомендуем использовать цифровые интерфейсы.Если ваша видеокарта не старше 2004 года, то, скорее всего, у неё есть DVI-выход. Большинство видеокарт с DVI-выходами поставляются вместе с переходниками, преобразующими сигнал с DVI на VGA/D-Sub. Так что владельцам аналоговых ЭЛТ-мониторов расстраиваться не стоит. Все современные видеокарты дают два DVI-выхода, которые позволяют подключить два дисплея и расширить возможности рабочего стола Windows. Впрочем, два дисплея поддерживает любая комбинация выводов DVI и D-Sub/VGA. Для новых дисплеев с большой диагональю и разрешением, например, для 30" ЖК-панелей Dell и Apple, требуется выход с двухканальным DVI (Dual-Link), который поддерживает "родное" разрешение 2560x1600.Традиционный видео-выход, повсеместно встречающийся у телевизоров и других видеоустройств, например, видеомагнитофонов. Видеосигнал проходит через единственный коаксиальный кабель. В результате мы получаем аналоговый сигнал низкого разрешения, который обычно хорош только для презентаций или игр. Вряд ли стоит читать с подключённого через "тюльпан" телевизора, поскольку качество очень низкое. Впрочем, "тюльпан" подходит для видео стандартного разрешения.

Композитный видео-выход "тюльпан", также известный как разъём RCA (Radio Corporation of America).
S-Video

S-Video (S-Video обозначает "Super Video" или "Super VHS") - ещё один аналоговый интерфейс видео, распространённый в телевизионной индустрии. На телевизор он даёт такой же сигнал низкого разрешения, как и "тюльпан", но цветовая информация разнесена по трём каналам, соответствующим базовым цветам. В итоге мы получаем более качественный сигнал, чем композитный по одному кабелю, но по-прежнему низкое динамическое разрешение. Хотя S-Video превосходит по качеству "тюльпан", стандарт сильно уступает компонентному выходу (Y, Pb, Pr).

Компонентные выходы слишком велики, чтобы располагать их на видеокарте, поэтому практически всегда используется переходник. Обычно переходник даёт компонентное видео (первые три разъёма) и звук (последние два разъёма). Данный стандарт предусматривает три раздельных разъёма типа "тюльпан": "Y", "Pb" и "Pr". Они обеспечивают раздельную цветовую информацию для HDTV (телевидение высокого разрешения). Подобный тип соединения также присутствует на многих цифровых проекторах. Хотя сигнал передаётся в аналоговой форме, его качество вполне можно сравнить с интерфейсом высокого разрешения VGA. Через компонентный интерфейс можно передавать видео высокого разрешения (HD).

HDMI расшифровывается как "High Definition Multimedia Interface". HDMI - стандарт будущего полное описание HDMI. Это единственный интерфейс, который обеспечивает передачу видео- и аудио-информации по одному кабелю. HDMI был разработан для телевидения и кино, но и компьютерные пользователи смогут полагаться на HDMI для просмотра видео высокого разрешения.

Интерфейсы видеокартСвоей интерфейсной частью видеокарта вставляется в материнскую плату вашего компьютера. По сути, это слот, с помощью которого компьютер и видеокарта обмениваются информацией. Так как на материнской плате обычно присутствует слот какого-либо одного типа, то важно покупать видеокарту, которая будет ему соответствовать. Например, видеокарта PCI Express не будет работать в слоте AGP.

видеокарта PCI ExpressИнтерфейс PCI является современным стандартом для большинства карт расширения, но видеокарты в своё время отошли от интерфейса PCI на стандарт AGP (а позже и на PCI Express). Некоторые компьютеры не имеют слотов AGP или PCI Express для модернизации графической подсистемы. Единственной возможностью для них остаётся интерфейс PCI, но видеокарты для него встречаются редко, стоят дорого, да и их производительность оставляет желать лучшего.

PCI-X расшифровывается как "Peripheral Component Interconnect - Extended", то есть перед нами 64-битная шина с пропускной способностью до 4266 Мбайт/с в зависимости от частоты. PCI-X (не путать с PCI Express!) - это первая скоростная модернизация шины PCI Express, но при этом она получила ряд функций, полезных в серверном пространстве. Шина PCI-X не слишком часто встречается в обычных ПК, а видеокарты PCI-X очень редки. Можно установить карту PCI-X в обычный слот PCI, если он поддерживает последнюю версию стандарта (PCI 2.2 или выше), но со стандартом PCI Express PCI-X не совместим.

AGP - интерфейс с высокой пропускной способностью, специально предназначенный для видеокарт. Он базируется на спецификации PCI версии 2.1. Интерфейс AGP прошёл через несколько версий, а последней стала AGP 8x со скоростью 2,1 Гбайт/с, которая в восемь раз быстрее начального стандарта AGP со скоростью 266 Мбайт/с (32 бита, 66 МГц). AGP на новых материнских платах уступает место интерфейсу PCI Express, но AGP 8x (и даже AGP 4x) всё же дают достаточную пропускную способность для современных видеокарт. Все карты AGP 8x могут работать как в слотах AGP 4x, так и AGP 8x.

В отличие от ISA, PCI и AGP, стандарт PCI Express является последовательным, а не параллельным. Поэтому число контактов существенно уменьшилось. В отличие от параллельных шин, нужная пропускная способность доступна для каждого устройства. В то время как, например, для PCI пропускная способность разделяется между использующимися картами.PCI Express позволяет сочетать несколько одиночных линий для увеличения пропускной способности. Слоты PCI Express x1 короткие и маленькие, при этом они дают суммарную скорость 250 Мбайт/с в обоих направлениях (на устройство и от него). PCI Express x16 (16 линий) даёт пропускную способность 4 Гбайт/с в одном направлении или 8 Гбайт/с в сумме. Меньшие варианты слотов PCI Express (x8, x4, x1) для графики не используются. Следует отметить, что механически слот может соответствовать x16 линиям, но логически к нему может быть подведено их меньшее количество. Существует много материнских плат, у которых два слота PCI Express x16 могут работать в режиме x8, что позволяет установить две видеокарты (SLI или CrossFire).

Охлаждение

Видеокарты могут потреблять (и, соответственно, выделять) столько же энергии, сколько 150-Вт лампочка. Подобное количество тепла, выделяемое с поверхности одного кремниевого чипа, может легко сжечь кристалл. Поэтому тепло следует своевременно отводить с помощью стабильных и мощных кулеров. Без систем охлаждения графический процессор или память могут перегреться, что приведёт к "повисанию" компьютера, а в худшем случае даже к выходу видеокарты из строя.Охлаждение может осуществляться как пассивно с помощью теплопроводящих материалов и радиаторов, так и активно, если работает вентилятор. Но в последнем случае придётся довольствоваться повышенным уровнем шума.

Радиаторы

Охлаждение графический процессор Под словом "радиатор" (heatsink) обычно понимают пассивное охлаждение. Радиатор понижает температуру чипа, к которому он подключён, благодаря отводу тепла и повышению площади теплообмена с воздухом. Для этой цели радиаторы обычно используют рёбра. Их можно найти на графических процессорах, а также на чипах памяти.
Тепловые трубки

Видеокарты с пассивным охлаждением часто используют тепловые трубки. Чем больше поверхность радиатора, тем лучше будет отвод тепла. Но иногда непосредственно на самом чипе сложно установить большой радиатор из-за ограниченного свободного места. Некоторые чипы настолько компактны, что громоздкий вентилятор не будет правильно работать из-за слишком малой контактной площади. В таких случаях помогают тепловые трубки, поскольку они значительно увеличивают теплопередачу от нагреваемого участка к радиатору. К чипу прикладывается пластина из материала с высокой теплопроводностью. А уже к ней прикрепляется тепловая трубка, которая отводит тепло к радиатору на другом своём конце. И там уже тепло легко можно рассеять.

Кулеры

В большинстве случаев кулер видеокарты представляет собой радиатор с прикреплённым вентилятором, который продувает воздух вдоль поверхности радиатора, таким образом отводя тепло. Кулеры видеокарт чаще всего охлаждают графический процессор, поскольку это самый горячий компонент видеокарты. Сегодня на рынке можно найти немало кулеров для видеокарт, которые можно установить вместо штатных вариантов. Часто кулеры видеокарты называют VGA-кулеры. Но VGA-кулеры зачастую охлаждают не только графический процессор, но и чипы видеопамяти.

Графический процессор

графический процессор видеокарты

Графический процессор можно назвать "сердцем" видеокарты, почти так, как центральный процессор является "мозгом" компьютера и является самой важной частью видеокарты. В большинстве случаев графический процессор скрыт от постороннего взгляда кулером и радиатором видеокарты. Следует отметить, что графический процессор чаще всего является самым большим и горячим компонентом видеокарты.

Видеопамять

Видеопамять на карте обычно располагается рядом с графическим процессором. Если графический процессор можно назвать "сердцем" видеокарты, то память - это источник жизненной силы.

Чипы памяти (обычно их бывает от двух до восьми) чаще всего располагаются на видеокарте вокруг или по одну сторону от графического процессора. Они выглядят как маленькие чёрные прямоугольники или квадраты равного размера.

Во многих случаях на чипы памяти радиаторы не устанавливаются, поэтому их легко можно заметить на видеокарте. Но иногда к чипам памяти прикрепляется радиатор, либо они закрываются общим с GPU кулером, охлаждающим как графический процессор, так и память.

Современные видеокарты, как правило, оснащаются 128, 256 или 512 Мбайт памяти, причём используется как память DDR2, так и GDDR3. Чем больше будет памяти на видеокарте, тем больше графических данных (как правило, текстур), можно сохранять локально, то есть за ними не нужно будет обращаться в память компьютера.

Впрочем, объём - это далеко не всё. Часто дешёвые или массовые видеокарты оснащают большим количеством памяти, чтобы они быстрее продавались. Если современные модели видеокарт используют шину памяти 128 или 256 бит шириной, то некоторые дешёвые и даже средние по цене карты оснащены всего лишь 64-битной шиной. Представьте себе две видеокарты с равными частотами, одна из которых использует 128-битную шину, а вторая - 64-битную. Первая будет передавать за единицу времени в два раза больше данных, чем карта с 64-битной шиной. Современные игры требуют, чтобы рабочие данные хранились в видеопамяти. И если они не будут своевременно поступать к графическому процессору (в случае узкой шины), то он будет простаивать, а игра - ощутимо "тормозить".

Если вам придётся выбирать между двумя видеокартами, которые различаются тактовыми частотами, объёмом памяти и шириной шины, то всегда выбирайте меньший объём с более широкой шиной. Конечно, если вы получите при этом быструю память и/или скоростной графический процессор. Это того стоит.

compruk.blogspot.com

Как выбрать видеокарту — оптимизация связки процессор + видеокарта. Часть 3 — Сборка или апгрейд системного блока компьютера (ПК)

  • Интегрированная графика
  • Устройство видеокарт
  • Основные характеристики видеопроцессора
  • Разграничение видеокарт по классу
  • 9 советов о выборе видеокарты
  • Видеокарта является основным компонентом любого компьютера. Она отвечает за отображение графической информации на мониторе вашего ПК. Как известно отображение информации на мониторе происходит попиксельно — каждый пиксель вашего экрана формирует определенный цвет, и в результате, за счет того что пикселей много и они маленькие, мы видим цельную картинку.

    Но у вас может возникнуть закономерный вопрос — почему же центральный процессор не может рассчитывать эти самые пиксели? В принципе он может, но расчет каждого пикселеля довольно простая задача, требующая небольшого количества однотипных математических инструкций. Поэтому намного практичнее сделать многоядерный процессор — количество ядер исчисляется сотнями, которые будут иметь базовый набор инструкций для расчета большого количества пикселей. Такие ядра называются шейдерными блоками.

    Но многие компьютеры на данный момент работают без внешней (дискретной) графики. Такие компьютеры имеют гибридные процессоры — в процессор интегрируют видеоядро. Соответственно такой вариант организации графической системы ПК именуется как интегрированная графика (раньше были вариации встраивания видеоядра в чипсет материнской платы).

    Эта статья написана в виде цикла о сборке компьютера, поэтому также вы можете ознакомится с содержанием. Рекомендую изначально ознакомится со статьей о выборе процессора, либо если вы решили использовать интегрированную графику, непосредственно перейти к выбору оперативной памяти и жесткого диска.

    Интегрированная графика

    Как было уже отмечено, множество современных процессоров от Intel (кроме линеек Kaby Lake-X и Skylake-X на сокете LGA 2066) и процессоры APU AMD имеют в себе встроенное видеоядро. Такое ядро отрезает часть оперативной памяти под свои нужды, но такая память работает медленней даже обычной GDDR3 видеопамяти.

    Но на данный момент интернированной графики вполне хватит для обычной работы на компьютере, серфинга в интернете, просмотра фильмов и т. д. Если вы будете удовлетворены разрешениями 1280×1024 или 1024×768 в играх прошлых поколений — вы вполне сможете играть на высоких настройках с приличным FPS. Для большинства современных игр с разрешением 1920×1080 пикселей придется установить низкие настройки качества, и то такие игры потянут не все процессоры (производительность интегрированной графики возрастает пропорционально мощности процессора).

    Для увеличения производительности любой интегрированной графики необходимо использовать оперативную память с большей тактовой частотой и в двухканальном режиме (две парные планки по 2/4/8 Гб, подробнее в статье о выборе оперативки).

    Дополнительно процессоры от AMD линейки A4-А10 (платформы под Socket FM2/FM2+) поддерживают технологию Dual Graphics — увеличение производительности некоторых дискретных видеокарт Radeon при их совместной установки с данными процессорами (что то на подобии технологий SLI или CrossFire).

    Как вывод необходимо добавить, что интегрированная графика не чем особым не отличается от дискретных видеокарточек стоимостью до 50-60$, поэтому зачастую покупка таких видеокарт нецелесообразна.

    Устройство видеокарт

    Устройство видеокарт

  1. Графический процессор — GPU (Graphics processing unit) — процессор, который производит все расчеты для отображения и формирования выводимой граффики. Он является центром любой видеокарты — от него зависит большинство ее характеристик.
  2. Видеопамять — аналог оперативной памяти для центрального процессора, правда работает на более высоких частотах. Используется для хранения всех данных необходимых для работы GPU.
  3. Подсистема питания — формирует напряжения питания памяти, графического процессора и других систем, необходимых для питания процессора. Сама запитка видеокарты происходит через слот PCI-Express и дополнительно (для мощных карточек) через разъемы дополнительного питания PCI-E — 6-pin или 8-pin . Если блок питания не имеет такого разъема (либо, например, он один, а нужно два) можно воспользоваться специальным переходником molex в 6-пиновый PCI-E для видеокарты, самое главное чтобы позволяла мощность блока питания.Также в последнее время используется 8-пиновый разъем для запитки видеокарточек. При его отсутствии также можно воспользоваться переходником. Производить подключение напрямую 6-пинового разъема вместо 8-pin нельзя.В общем, разъем дополнительного питания PCI-E очень желателен для любых видеокоарт, так как он разгружает внутренние шины питания материнской платы — как результат на них наводится меньше наводок, не происходит просадок напряжения при нагрузке.
  4. Разъем PCI-Express — предназначен для установки в соответствующий слот PCI-Express на материнской платы. По шине PCI-Express происходит взаимнообмен данными между центральным и графическим процессорами.
  5. Внешние выходы для подключения мониторов.
  6. Видео-BIOS (не обозначен) — так как современные видеокарточки являются довольно сложными устройствами их инициализация требует собственного BIOS-а. Там же зачастую находятся все настройки данной графической карты.
  7. Система охлаждения — предназначена для охлаждения кристалла графического процессора.

Основные характеристики видеопроцессора

Тактовая частота видеочипа в конкретной видеокарте

Как и центральный процессор видеопроцессор работает на определенной тактовой частотой, в этом случае она обычно измеряется в мегагерцах (МГц). Обычно из коробки видеопроцессор работает оптимальной, заявленной производителем частоте. Но в некоторых случаях производители занижают тактовые частоты видеочипа для того чтобы произвести установку меньшего радиатора, тем самым удешевив видекарту. Также имеется и обратная сторона — увеличение тактовой частоты, так называемый «заводской разгон».

Конечно, чем более высокая тактовая частота — тем более производительной будет видеокарта. Некоторые видеочипы работают с различными частотами — например весь чип работает на одной частоте, а универсальные расчетные блоки на повышенной.

Унифицированные шейдерные блоки (универсальные ядра)

Производят выполнение расчетов как пиксельные, вершинные либо геометрические процессоры динамически расспределяясь в зависимости от нужд. Таких блоков наиболее высокое количество, и именно по их количество наиболее легко на вскидку производить оценку видеочипов. Примерное распределение по количеству универсальных блоков и тактовой частоте:

  • Бюджетные видеокарты обладают 400-500 универсальными шейдерными блоками работающими на частоте от 900 до 1100 МГц.
  • Игровые начального уровня работают на тактовой частоте от 1300 до 1500 МГц и наделены 600-800 универсальными блоками.
  • Среднеигровые имеют в своем арсенале уже 1200-1500 шейдерных блоков работающих на частоте от 1500 до 1700 МГц.
  • Дальнейшее увеличение производительности происходит за счет увеличения универсальных ядер — от 1600 до 1900 для высокого класса видеокарт, тактовая частота прежняя — от 1500 до 1700 МГц.
  • Ну и топовые (предтоповые) видеокарты имеют от 2500 и выше (примерно до 3500) универсальных шейдерных блоков, которые работают на той же частоте — от 1500 до 1700 МГц.

Блоки текстурирования (TMU)

Предназначены для выборки и фильтрации различных текстурных данных, которые нужны для построения сцены. Хотя большинство расчетов производится унифицированными ядрами, все же эти блоки играют не последнюю роль — их количество изменяется практически пропорционально количеству универсальных блоков.

Блоки операций растеризации (ROP)

Как можно понять и зназвания эти блоки производят постобработку рассчитанных пикселей перед непосредственной ее передачей на ваш монитор и запись ее в соответствующие буферы. Количество этих блоков также имеет некоторую пропорцию с универсальными блоками.

Архитектура видеопроцессора

Производить оценку по тактовой частоте и количеству универсальных блоков не очень правильно, ведь как и в случае с центральным процессорами различные видеокарты имеют различные ядра (набор инструкций). Естественно при равных остальных более новое ядро будет явно выигрывать.

Разграничение видеокарт по классу

Обычно на всех сайтах (как и в этой статье) происходит разграничение видеокарт по классам:

  • Начальный класс обеспечит вам возможность поиграть (отсутствие торможений) в большинство современных игр на как минимум на низких настройках качества. Конечно, для большей части этих игр данные графические карты смогут обеспечить и более высокие настройки графики.
  • Средний класс по аналогу сможет порадовать вас как минимум средними настройками с приличным fps, но обычно вы получите возможность без проблем использовать высокие настройки графики.
  • Высокий класс — высокие либо ультра настройки графики.
  • Топовые видеокарты надлены большим запасом в производительности, которого вполне хватит для игр которые появятся в ближайшие время. Естественно, для игры на ультра настройках качества.

9 советов о выборе видеокарты

1. Определяемся с объемом и типом видеопамяти

Наиболее целесообразна покупка видеокарты с памятью типа GDDR5 для любого типа видеокарт (даже бюджетных). Все еще встречаются видеокарты с дешевой устаревшей памятью DDR3 и GDDR3 (к слову DDR3 лучше GDDR3), но при покупке новой видеокарты такими моделями лучше пренебречь. Топовые модели видеокарт оснащаются иной памятью — для видеокарточек nVidia это еще более быстрая GDDR5X. В топовых видеокартах от AMD (Radeon) используется многослойная память HBM2 (в будущем планируется поддержка этой памяти и компанией nVidia, уже есть модели для серверных решений). Такая память располагается непосредственно на подложке кристала видеочипа, за счет коротких дорожек и трехмерной структуре памяти достигается значительное увеличение пропускной способности по сравнению даже с GDDR5X (в сравнении с предыдущим поколением HBM пропускная способность увеличена в 2 раза).GPU с памятью HBM2

Многие пользователи выбирают видеокарты по объему видеопамяти, чем пользуются многие производители устанавливая большие объемы дешевой GDDR3 совместно со слабыми графическими процессорами. Как результат, такая память просто простаивает. На практике, к примеру, 1 Гб GDDR5 зачастую будет лучшим выбором нежили 2 Гб GDDR3. Но в общем, минимальный объем для различных задач:

  • 1 Гб GDDR5 — апгрейд старых систем
  • 2 Гб — для бюджетных игровых платформ, но можно купить и видеокарту с 1 Гб GDDR5 для модернизации старых компьютеров.
  • 4 Гб — хорошая база для игрового компьютера
  • 6-8 Гб — необходимый объем для геймерских компьютеров — топовые видеокарты.

Но вообще обычно производители не экономят на объеме видеопамяти, намного важнее на практике ее тип и количество бит в шине данных для связи с GPU.

2. Обратите внимание на разрядность шины памяти (к-во bit) — пропускную способность

При выборе видеокарт с памятью HBM2 этим пунктом можно пренебречь (там количество каналов фиксированное для каждого объема).

Количество бит в шине данных для подключения видеопамяти памяти к GPU является одной из наиболее важных характеристик видеокарточек касающихся памяти. Минимум на сегодняшний день составляет 128 bit, хотя есть и модели с шиной данных в 64 bit (пойдут под апгрейд). Но покупка такой новой видеокарты не очень целесообразна. Видеокарты среднего класса обладают шиной данных в 192 bit, а для топовых видеокарт этот параметр составляет 256 bit и выше.

Пропускная способность является объединяющем фактором для всех выше рассмотренных параметров видеопамяти и в принципе в можете ориентироватся только по ней:

  • Низкая ПС — от 80 до 112 Гб/с. Характерна для большинства бюджетных моделей. Если использовать видеопамять с такой пропускной способностью с мощными чипами GPU, то возможности GPU будут упираться в ПС.
  • Средняя ПС — от 224 до 256 Гб/с. Актуально для большинства игровых/геймерских моделей.
  • Высокая ПС — от 320 до 512 Гб/с. Различные топовые геймерские видеокарты.

3. Определяемся с разработчиком и производителями видеокарт

Видеокарты разрабатывают всего два производителя AMD — торговая марка Radeon, и nVidia — поставляются под маркой GeForce. Оба производителя на данный момент идут практически на равных, поэтому однозначно сказать кто лучше особо и не получится. Видеокарты от nVidia считаются более оптимизированы под большинство игр (в свое время компания nVidia активно сотрудничала с разработчиками этих самых игр). Но в последнее время графические карты от AMD исправили этот пробел, и пользователи уже не имеют никаких особых проблем с совместимостью. При этом обычно видеокарты AMD Radeon зачастую дешевле на 10-20% аналогов от nVidia.

Референс или нереференс? (заводской разгон)

Обычно разработчики видеокарт поставляют свои графические процессоры и наделяют производителей стандартной разводкой печатной платы — эталонный дизайн PCB, так называемый референс. После производители могут изменять печатную плату под конкретную модель — получаются видеокарты типа нереференс. Обычно такие решения применяются для того чтобы произвести заводской разгон (хотя есть вариации с обратной стороной медали — ограничение производительности видеочипа для ограничения тепловыделения), соответственно устанавливаются более надежные компоненты, повышается максимальная выходная мощность подсистемы питания. Но такой дизайн и разводка не всегда выходит лучше оригинальных, такие решения зачастую бывают более шумными (ценителям тишины на заметку).

Референс или нереференс

Имеет смысл доплачивать за «прокачанные видеокарты» — заводской разгон, если производитель доработал подсистему питания и значительно повысил тактовые частоты графического процессора. Ведь 10МГц в принципе тоже как бы «разгон». Ну или если разница в цене небольшая (обычно так и есть).

Радиаторы и вариации систем охлаждения разрабатываются производителями видеокарт обычно самостоятельно. Поэтому очень важно выбрать опытного производителя, который сможет не только качественно собрать видеокарту, но и корректно разработать надлежащую систему охлаждения. Из хорошо зарекомендовавших производителей особенно выделяются ASUS, MSI и Gigabyte, мое личное предпочтение остается за компанией ASUS.

4. Главное: процессорозависимость — оптимизация связки процессор + видеокарта

Игровые возможности любого компьютера определяются не только производительностью видеокарты, но и процессора. Конечно, существуют как более процессорозависимые игры, так и с большим упором в видеокарту. Так вот, если вы купите мощную видеокарточку и поставите ее с слабим процессором, то нагрузка на видеокарту не сможет достичь выше определенного предела — видеокарта не будет раскрывать своих возможностей. С некоторой стороны это типа как лучше — видеокарта недогружена, меньше греется… Но если вы посмотрите на ценник, то вам эта идея явно не понравится. Да и видеокарты с продуманным охлаждением будут служить долго и счастливо, если их не мучить разгоном.

Идеальная, не только по моему скромномному мнению, комбинация процессора и видеокарты представляет собой вариацию, когда в процессорозависимой игре (вроде как это Witcher 3, GTA V) средняя нагрузка на процессор будет составлять 80-85% при загрузке видеокарты на все 95-100 %. Посмотреть fps, загруженность процессора и видеокарты можно при помощи различных программ — FRAPS (универсальный вариант), Steam, MSI Afterburner и т. д.

Существует довольно несколько способов для покупки оптимизированной сборки видеокарты и процессора, я постараюсь описать наиболее простые

Способ 1 — По цене/классу

Это довольно легкий, но примерный способ. Вы берете цену процессора, умножаете ее на 1,6 — получается примерная стоимость видеокарты. В большинстве случаев такая вариация попадает в цель. При апгрейде компьютера нужно подобрать аналог по производительности для процессора (узнать актуальную цену).Также можно подбирать по классам процессоров/видеокарт, если классы соответствуют, скорее всего вы попадете в цель. Но это примерные, не слишком надежные способы.

Способ 2 — Сравнение по производительности

Как по мне это один из самых лучших и надежных вариантов. Для ранее выбранного процессора необходимо найти его результат в тесте PassMark CPU Mark (например, заходим на сайт www.cpubenchmark.net/cpu_list.php ).

Например, для процессора Core i3-6100 результат в данном тесте равен 5494 баллам. Дальше производим несколько математических операций — полученые балы множим на 1.2, 0.9 и 0.6; т. е.:

  • 5494*1.2=6582 балов — максимальный результат для покупаемой видеокарты
  • 5494*0.9=4936 балов — средне-оптимальный уровень, возможно изменение данного коэффициента в пределах 0.8-1.05
  • 5494*0.6=3291 балов — с меньшим количеством балов покупать видеокарту не желательно, если вы хотите раскрыть возможности процессора.

Все вышеполученые в расчетах балы сравниваются с результатами видеокарт в тесте PassMark G3D Mark (например зайдите на сайт www.videocardbenchmark.net/gpu_list.php и отсортируйте видеокарты по результатам теста — в список попадут довольно много карточек, нужно выбирать более новые модели) и определитесь с подходящей видеокартой. Чем выше в данном промежутке вы будет подыматься, тем более полно вы раскроете возможности процессора (процессор сможет раскрыть любую карточку из этого промежутка, но если вы подымитесь выше коэффициента 1.2 то видеокарточка будет уже простаивать. Из двух схожих по результатам тестов видеокарт лучше будет та что новее, хотя в принципе можно купить более мощную видеокарту прошлого поколения — производительность выше, а цена ниже!

Способ 3 — Просмотр результатов производительности готовых связок

В таком случае после выбора процессора вы забиваете его название в поиск и переходите в раздел видео. Там просматриваете готовые различные связки этого процессора с наиболее подходящими видеокартами, смотрите на получившийся fps, загруженость процессора и видеокарты в практическом применении — различных играх. После просмотра нескольких вариаций, вы сможете выбрать наиболее подходящую.В заключение необходимо добавить неокторое универсальное правило: при выборе между несколькими приглянувшимся графическими картами, нужно произвести их сравнение по производительности и цене:Если цена больше на 5-10% а производительность выше на 15-30% — покупайте более дорогую видеокарту;Если же производительность выше на 5-10%, а цена на 15-30% — выберете более дешевую карточку.

Способ 4 — Расстановка «галочек» при выборе видеокарт в интернет магазинах по классах

В этой вариации просто проставляются по несколько галочек, и производится сортировка по цене, например на ЯндексМаркете либо сервисе magazilla.ru . Изначально выберете производителей — ASUS, MSI и Gigabyte.

Начальный класс — объем 2 Гб, разрядность шины — 128 бит. Можно ограничить интерфейсный разъем PCI Express версией 3.0, но это чисто на ваше усмотрение. Немного переходим в средний класс — тип памяти GDDR5. Дальше производим увеличение объема памяти до 4 Гб, разрядность шины данных можно уже увеличить 192-256 бит. Это уже будет полноценный средний класс. Средне высокий класс уже будет иметь 6 Гб видеопамяти.

Если же хотим иметь карточку высокого класса выставляем разрядность шины больше 256 бит, объем >= 6 Гб, топовые — дополнительно тип памяти GDDR5X, HBM2.

5. Особое внимание уделите гарантии

Видеокарты одни из самых горячих и ненадежных компонентов современного компьютера. Поэтому совсем не нужно экономить на гарантии — выбирайте модели с гарантией от 18 месяцев и больше. Это позволит вам быть более уверенным в качестве видеокарты. Но учтите, что обычно если вы произведете разгон вашей видеокарты гарантия на нее благополучно исчезнет (кроме вариаций моделей с заводским разгоном).

6. Обращаем внимание на техпроцесс и энергопотребление

Такой параметр как техпроцесс производит обозначение технологии по которой производятся видеокарты. Чем современнее оборудование тем меньше техпроцесс. Проще говоря техпроцесс показывает сколько «места» занимает один транзистор. Увеличение кристалла выше определенных размеров невозможно из-за некоторых физических ограничений передвижения электронов и повышенного тепловыделения (нужно отводить очень много тепла от маленькой площади. Поэтому дальнейшее развитее технологии происходит с уменьшением техпроцесса.

На данный момент видеокарты выпускаются с техпроцессом от 22 до 14 нм. Как вы уже наверное поняли, чем меньше техпроцесс тем лучше — если вы колеблитесь между выбором двух схожих графических карточек, то нужно выбрать ту, в которой техпроцесс будет меньше.

При уменьшении техпроцесса при схожей производительности будет меньше энергопотребление, и соответственно тепловыделение. Т.е. основное потребление энергии всей видеокарты сосредоточенно именно на видеочипе.

Чем мошнее видеокарта тем больше энергии она потребляет. Для видеокарт начального уровня этот пункт приравнивается примерно к 75 Вт, середнячки потребляют около 120 Вт, более высокого класса 150 Вт. Предтоповым и топовым видеокартам уже нужно порядка 180 — 250 Вт. Наиболее актуальны видеокарты с потреблением 120/150 Вт по соотношению производительность/ энергопотребление.Поэтому нужно быть очень внимательным при выборе блока питания, ибо если он не сможет обеспечить соответствующую подачу энергии, он может сгореть, при этом потянув за собой как и видеокарту, так и материнскую плату.

7. Сравните системы охлаждения видеокарт

Системы охлаждения видеокарт бывают, как всегда, активные и пассивные. При пассивном охлаждении видеокарта обладает радиатором без собственного кулера. Таким видеокартам необходима продуманная система циркуляции воздуха внутри системного блока и постоянной очистки видеокарты от пыли, иначе они перегреваются и заблаговременно выходят из строя. Поэтому я не рекомендую покупать такие видеокарты.

При активном охлаждении имеется несколько вариаций оного:

Внимание! При выборе видеокарт вы можете увидеть несколько вариаций моделей видеокарт основанных на одном видеочипе с различными системами охлаждениями. Ни в коем случае не нужно экономить на системе охлаждения — выберите наиболее лучшую систему охлаждения.

8. Установка нескольких видеокарт — режимы SLI или CrossFire

Многие материнские платы имеют несколько разъемов для подключения видеокарт. Это делается для увеличения общей производительности графической системы компьютера в играх. При таком раскладе видеокарты не только устанавливаются в два слота PCI-Express х16, но и соединяются между собой. Если видеокарта имеет один разъем для соединения графических плат между собой, то возможно соединение двух карточек между собой, если же два — трех или четырех.

Соединение видеокарт между собой и объединение их вычислительной мощности возможно только между видеокартами одного разработчика. Для видеокарт с торговой маркой AMD Radeon этот режим называется CrossFire, а для графических карт nVidia — SLI. Также некоторые материнские платы имеют привязку только к одной из этих технологий, хотя уже вроде большинство новыз материнских плат поддерживает обе.

CrossFire

Если вы планируете подключать несколько видеокарт, то вам необходима шина PCI-Express версии 3.0, не ниже. Также нужно учитывать, что количество линий PCI-Express будет распределено между видеокартами (8+8). Хотя есть вариации когда процессор имеет несколько полноценных шин PCI-Express (подробнее смотрите в разделе «Чипсеты» предыдущей статьи о выборе материнской платы).

Недостатки подключения нескольких видеокарт

Установка нескольких видеокарт не обделена недостатками:

  • Увеличение общей стоимости сборки компьютера
  • Так видеокарты являются наиболее слабым звеном — уменьшение надежности всего ПК
  • Две видеокарты — в два раза больше шума
  • Необходимая мощность блока питания также очень быстро возрастает
  • Необходимо более серьезно организовывать внутреннею систему охлаждения
  • Ухудшение совместимости в играх

Поэтому установка нескольких видеокарт имеет смысл только при сборке топового компьютера с планами играть с разрешением 4k, и соответственно устанавливать самые топовые модели видеокарт. Намного лучше вместо двух видеокарт поставить одну более мощную графическую карту, конечно если имеется такая возможность. Это обычно дешевле, надежнее и не так шумно.

9. Дополнительные параметры выбора

Интерфейсный разъем

Подключение видеокарт происходит при помощи интерфейса PCI-Express х16. Для некоторых процессоров или при работе в режимах SLI или CrossFire зачастую будет задействована шина PCI-Express х8 — все равно, согласно исследованиям, очень редко видеокарта может загрузить шину PCI-Express версии 3.0 больше чем на 50%.

На сегодняшний день можно встретить PCI-Express версий 2.0 / 2.1 / 3.0. Все они наделены обратной совместимостью, но конечно намного лучше выбрать как видеокарту, так и материнскую плату с шиной PCI-Express v 3.0 — чем больше версия данного интерфейса, тем больше его пропускная способность.

Разъем PCI Express x16 — видеокарта

Разъем PCI Express x16 — видеокарта

Разъем PCI Express x16 — материнская плата

Разъем PCI Express x16 — материнская плата

Особенности обозначения видеокарт
Видеокарты nVidia

Первым в обозначении любой видеокарты nVidia стоит торговая марка GeForce. Буквы GT указывает на принадлежность видекоарты к начальному классу, а GTX – уже к более высокому. Далее идет обозначение серии 7, 8, 10 — обновляется практически ежегодно с обновлением серии. Последующие две цифры (30,40,50,60,70,80) условно обозначают производительность видеокарт — чем больше цифра, тем больше мощность видеокарты (конечно, сравнение корректное в пределах одной серии). Дальше возможна еще дополнительная приставка «Ti», она обозначает прирост производительности на 10-20% при сравнении с аналогичной моделью без «Ti».

Видеокарты AMD

Также как и с nVidia изначально в названии проставлено название торговой марки — Radeon. Последующим следует обозначение класса R7 — средний класс, R9 — предтоповые и топовые видеокарты. Но в 2017 году была выпушена линейка Radeon RX, которая совмещает в себе от бюджетного до топового класса видеокарт.

Дальше идут три цифры условно характеризующие производительность видеокарты — чем больше тем лучше. Приставка «Х» в конче названия указывает на увеличенную на те же процентов 10-20% производительность в сравнении с аналогом без оной приставки.

Очень мощные топовые видеокарты наделены обозначением Nano или Fury, а также не нужно забывать про выпущенные в конце 2017 года топовые платформы Vega 56 и Vega 64.

Где можно найти характеристики и сравнить видеокарты

Характеристики всех видеокарт можно найти на сайте продавца, производителя, а также непосредственно у разработчиков:

  • AMD: products.amd.com/en-us/search/desktop-graphics
  • NVIDIA: www.nvidia.ru/object/geforce-desktop-graphics-cards-ru.html

Сравнение нескольких видеокарт можно произвести при помощи различных сервисов (поищите в Google по тегу сравнение видеокарт). Также вы можете выбрать несколько видеокарт просто забить их названия через пробел в поиск. Скорее всего вы получите в результате не только результаты синтетических тестов, но и практическое сравнение в определенных играх.

Внешние разъемы видеокарты

VGA (D-SUB) — устаревающий разъем, на данный момент используется в основном при подключении старых мониторов и проекторов. Современные видеокарты зачастую могут не иметь данного разъема.

DVI — вполне себе современный разъем, бывают вариации как только с цифровой передачей видеоданных DVI-D, так и со сдвоенной — аналоговая и цифровая передача видеосигнала DVI-I. При наличии интерфейса DVI-I можно воспользоваться переходником DVI-I to VGA (при DVI-D такой трюк не возможен).

 

DisplayPort — используется для подключения современных мониторов с высокой частотой обновления — более 60 Гц.

HDMI — как по мне наиболее универсальный видеоразъем, с его помощью можно передавать не только изображение с высокой частотой обновления, но также и звук. Идеально подходит для подключения компьютера к телевизору.

Очень желательно чтобы современные видеокарты были наделены тремя новейшими типами разъемов — HDMI, DisplayPort и DVI. Не нужно забывать про возможность подключения второго монитора/проектора/телевизора, либо даже создания двух рабочих мест на базе одного системного блока.

Форм-фактор видеокарт

Основное отличие между разными видеокартами заключается в их размерах — которые изменяются как в ширину, так и в длину. При покупке очень длинной видеокарты она может мешать установке жесткого диска либо вообще не влазить в корпус. Но это решается элементарно — нужно просто купить соответствующий по размерам корпус или переставить жесткий диск (при возможности).

Также видеокарты изменяются в ширину — обычно видеокарта расширяется на ширину двух стандартных PCI Express слота, тем самым перекрывая один из слотов для установки плат расширения (например ТВ тюнеров). Но обычно имеются другие свободные слоты, да и пользователи довольно редко в последнее время используют эти самые платы (сетевых портов, USB и т. д. уже распаяны на материнской плате).

Однослотовая видеокарта

Однослотовая видеокарта

Двухслотовая видеокарта

Двухслотовая видеокарта

gooosha.ru


Смотрите также