Интегрированная и дискретная графика в ноутбуках:. Интегрированные видеокарты intel


Настройка интегрированной видеокарты intel | Zone PC

Введение

Эта статья подойдет для большинства ноутбуков с гибридными видеокартами и ядро linux должно быть не ниже 2.6.34. Сам linux может быть на самом деле любой но рассмотрим на примере самого известного.

Конфигурация ноутбука на котором было проверено:

Acer 3820TG

ОС: Ubuntu 11.10, Ubuntu 12.04, Ubuntu 12.10Процессор: Intel Core i3-370MВидеоадаптер: AMD (ATI) Radeon HD 5470

Для решения проблем в Ubuntu 13.04 была написана дополнительная статья.

После установки Ubuntu сразу бросаются в глаза проблемы:

  • Яркость подсветки экрана вообще не регулируется
  • Повышенное потребление энергии и температура

Попробуем их решить.

Вначале посмотрим какие видеокарты нам доступны:

lspci | grep VGA

Получится примерно так

00:02.0 VGA compatible controller: Intel Corporation Core Processor Integrated Graphics Controller (rev 18) 02:00.0 VGA compatible controller: ATI Technologies Inc Manhattan [Radeon HD 5400 Series] (rev ff)

Здесь главное запомнить что 00:02.0 — intel, а 02:00.0 -radeon для других карточек цифры будут другими.

Удаление проприетарные драйверов

Предупреждаю сразу основная цель уменьшить энергопотребление. Для нормальной работы в большинстве случаев достаточно возможностей встроенной видеокарты intel (если не считать OpenGL игрушек). Как известно у радеонов всегда были проблемы с установкой проприетарных драйверов и заставить работать аппаратное ускорение без бубна удается далеко не всем. К тому же оказывается 5000 серия видеокарт по мнению AMD является устаревшей и поддержка этих карточек вырезали из драйверов, последний рабочий драйвер был если не ошибаюсь 11.6.У Nvidia ситуация немного лучше но с переключением на встроенную видеокарту и обратно также есть проблемы. Поэтому чтобы не заморачиваться с настройкой проприетарных драйверов мы их просто удалим:

Для Radeon выполним

apt-get remove fglrx

Также на всякий случай можно запретить загрузку модулей. Создаем файл /etc/modprobe.d/blacklist-radeon.conf со следующим содержимым:

blacklist fglrx

Для Nvidia

apt-get remove nvidia-current

Аналогично отключаем модули /etc/modprobe.d/blacklist-nvidia.conf

blacklist nouveau blacklist nvidia

Перезагружаемся.

Настройка switcheroo

Мы будем использовать драйвер из комплекта Xorg поэтому убедимся что он установлен:

apt-get install xserver-xorg-video-intel

Переключатель который мы будем использовать должен поддерживаться ядром поэтому сделаем проверку:

grep -i switcheroo /boot/config-*

Должно быть:

/boot/config-3.0.0-16-generic:CONFIG_VGA_SWITCHEROO=y

Теперь проверим наличие переключателя (по умолчанию он доступен только пользователю root)

sudo ls -l /sys/kernel/debug/vgaswitcheroo/switch

Команды управления switcheroo

Если switcheroo работает то ему можно передавать разные команды но все команды выполнять нужно с правами root.

— Выключить питание на неактивной видеокарте

echo OFF > /sys/kernel/debug/vgaswitcheroo/switch

— Включить питание на неактивной видеокарте

echo ON > /sys/kernel/debug/vgaswitcheroo/switch

— В теории переключить видеовыход на интегрированную карту (вроде ещё не работает)

echo IGD > /sys/kernel/debug/vgaswitcheroo/switch

— В теории переключить видеовыход на дискретную карту (вроде ещё не работает)

echo DIS > /sys/kernel/debug/vgaswitcheroo/switch

— Переключиться на интегрированную карту при следующей перезагрузке X server

echo DIGD > /sys/kernel/debug/vgaswitcheroo/switch

— Переключиться на дискретную карту при следующей перезагрузке X server

echo DDIS > /sys/kernel/debug/vgaswitcheroo/switch

Теперь чтобы увеличить продолжительность работы от батарейки в два раза достаточно при старте отключить дискретную видеокарту. Так как интегрированная карта обычно запускается как основная то достаточно добавить в файл /etc/rc.local (в старых дистрибутивах /etc/init.d/rc.local) перед строкой «exit 0» следующие строчки:

chown USERNAME /sys/kernel/debug/vgaswitcheroo/switch sleep 3 echo OFF >> /sys/kernel/debug/vgaswitcheroo/switch

В первой строке разрешим пользователю USERNAME посылать команды управления. Это нужно если захотим переключать видеокарты под своим пользователем, а не от рута. Далее ждем 3 секунды и отключаем питание на неактивной видеокарте в данном случае дискретной. Маленькое замечание если захотите вручную управлять переключением то вторую и третью строчку следует закомментировать.

После загрузки проверяем т.к. изредка переключение из автозагрузки не срабатывает:

sudo cat /sys/kernel/debug/vgaswitcheroo/switch

Должно получиться:

0:IGD:+:Pwr:0000:00:02.0 1:DIS: :Off:0000:02:00.0

Здесь «+» показывает активную видеокарту (сейчас intel). Pwr — говорит о том что питание на карту подается. Off — значит питание на карте (redeon) выключено и она не потребляет заряд батареи.

Комбинируя указанные выше команды управления можно переключаться между карточками можно делать только если стоят нормальные свободные драйвера на дискретную карту.

Например переключимся на дискретную карточку.

echo ON > /sys/kernel/debug/vgaswitcheroo/switch echo DDIS > /sys/kernel/debug/vgaswitcheroo/switch echo OFF > /sys/kernel/debug/vgaswitcheroo/switch

После этого нужно перезапустить X Server для этого достаточно перелогиниться (выйти из своего пользователя на стартовый экран и зайти обратно).

Аналогично переключаемся обратно на встроенную.

echo ON > /sys/kernel/debug/vgaswitcheroo/switch echo DIGD > /sys/kernel/debug/vgaswitcheroo/switch echo OFF > /sys/kernel/debug/vgaswitcheroo/switch

Единственное неудобство что налету карточки ещё не научили переключаться и нужно каждый раз перезапускать X Server.

Управление подсветкой экрана

Не знаю кто виноват в том что подсветка обычно страшно глючит или вообще не на что не реагирует но решается эта проблема обычно очень просто. Достаточно добавить параметр в конфиг /etc/default/grub

GRUB_CMDLINE_LINUX="acpi_backlight=vendor"

Этот параметр говорит ядру что подсветкой должно управлять железо.

Обновляем конфигурацию grub

sudo update-grub

Перезагружаемся и радуемся что подсветка начала реагировать на функциональные кнопки.

Источники:

https://help.ubuntu.com/community/HybridGraphics

http://habrahabr.ru/blogs/linux/134968/

Поделиться ссылкой:

www.zonepc.ru

Intel HD Graphics: интегрированная графика нового поколения

В прошлый раз мы изучили вычислительные возможности Clarkdale – первых чипов Intel, выполненных по 32-нанометровому техпроцессу. Однако данные устройства любопытны не только благодаря переходу на более прогрессивные технологические нормы. Процессорных дел мастерам впервые удалось поместить под крышку CPU и графический акселератор. Этот вопрос заслуживает отдельного внимания и изучения, потому во второй части материала детальнее остановимся на потенциале интегрированного видео новых моделей.

Для любителей поиграть на компьютере, возможно, станет откровением тот факт, что уже длительное время именно Intel является самым крупным поставщиком в сегменте графических адаптеров, где, по последним данным, ее доля составляет более 55% и продолжает увеличиваться. Рынок интегрированных решений огромен. Перенос видеоядра под крышку процессора лишь усилит лидирующие позиции компании.

Итак, что же собой представляет новая разработка Intel? Следует сказать, что компания отказалась от предыдущего названия серии Graphics Media Accelerator (GMA), предпочтя в свете последних тенденций более лаконичное и понятное – Intel HD Graphics. Как вы уже знаете, процессорное ядро в новых чипах Intel производится по нормам 32-нанометрового техпроцесса, в то время как кристаллы с GPU выпускаются по отработанной 45-нанометровой технологии. Очевидно, что такое решение имеет веское экономическое обоснование.

Архитектурно HD Graphics является скорее эволюционным развитием GMA X4500. Однако отличий между этими адаптерами достаточно много. Прежде всего отметим увеличенное с 10 до 12 количество SIMD-процессоров, а также улучшенную работу с Z-буфером. Аббревиатура HD не зря используется в названии графического решения Intel. Компания делает серьезный акцент на новых возможностях обработки видео высокого разрешения. Так, GPU позволяет на аппаратном уровне декодировать потоки VC-1, AVC/H.264 и MPEG-2. Улучшены алгоритмы масштабирования, шумоподавления и регулировки резкости. Впервые поддерживается двухпоточное видеодекодирование, позволяющее получить изображение в режиме «картинка в картинке». Из важных нововведений также стоит отметить возможность одновременного использования двух цифровых интерфейсов. GPU способен по HDMI или DisplayPort транслировать звук как в раскодированном виде, так и в форматах Dolby True HD и DTS-HD MasterAudio. Подобной функциональностью даже среди дискретных адаптеров могут похвастать только видеокарты линейки ATI Radeon HD 5000. По своим мультимедийным возможностям новые процессоры Intel и, соответственно, платформа LGA1156 идеально подходят для использования в составе HTPC.

В области игрового 3D выделим поддержку Shader Model 4.0 и Open GL 2.1. Упоминаний о DirectX 11 в спецификациях нет, но это не вызывает никакого сожаления. Мало кого интересуют формальности, не приносящие практической выгоды. А в случае с интегрированной графикой поддержка нового API пока может быть использована лишь в маркетинговых целях.

Встроенным графическим ядром оснащены все процессоры семейства Westmere, однако рабочая частота GPU зависит от конкретной модели CPU. Для чипов Pentium это 500 МГц, в Core i3 и большинстве Core i5 – 733 МГц. Особняком стоит Core i5-661 – у него частота GPU увеличена до 900 МГц. В мобильных CPU серии Arrandale интегрированный адаптер поддерживает функцию Dynamic Frequency, которая по аналогии с процессорной технологией Turbo Boost позволяет увеличивать частоту GPU во время повышения нагрузки и, соответственно, снижать ее при необходимости. Настольные чипы лишены такой функциональности – у них частота графического ядра постоянна.

Для использования встроенного видео понадобятся материнские платы на чипсетах Intel H55/H57, которые имеют специальный интерфейс Flexible Display Interface (FDI), необходимый для передачи видеоданных с процессора на PCH и впоследствии на экран монитора или телевизора. Похоже, наконец-то системные платы с интегрированным видео для платформы Intel в подавляющем большинстве будут снабжены цифровыми видеовыходами: DVI, HDMI и даже DisplayPort станут привычными атрибутами решений на H55/H57. Чипсет Intel P55 не обладает поддержкой шины FDI, потому задействовать интегрированное видео на плате с этим набором логики не удастся.

Разгон GPU

Графическое ядро HD Graphics можно разгонять отдельно от вычислительного модуля CPU. Производители материнских плат с радостью предоставляют такую возможность, выделяя соответствующий параметр в BIOS. Как и в случае с CPU, частотный потенциал видеоядра будет зависеть от конкретного экземпляра процессора. Предельные значения у протестированных нами чипов были примерно одинаковы: частоту ядра Core i5-661 удалось повысить до 1000 МГц, а у Core i3-530 – до 950 МГц. Наверняка тонкий тюнинг с увеличением напряжения питания GPU позволит добиться большего, но это скорее удел энтузиастов, покоряющих мировые вершины оверклокерских рейтингов в отдельно взятых номинациях.

С повышением частоты графического ядра производительность в 3D заметно возрастает, так как ограничивающим фактором здесь, конечно же, являются возможности акселератора. После разгона GPU процессор Core i3-530 в играх даже немного опередил Core i5-661, видеоядро которого работало в штатном режиме.

Очевидно, что использование встроенного GPU способно в той или иной мере влиять на частотный потенциал вычислительного блока процессора. Проведенные тестирования показывают, что применение интегрированного видеоядра ограничивает предельную рабочую частоту CPU, не позволяя добиться результатов, аналогичных получаемым с дискретной видеокартой. На практике вряд ли кому-то понадобится максимально разгонять процессор, используя встроенный GPU. Скорее, это просто нюанс, который нужно учитывать во время экспериментов.

Результаты тестирования

Судя по результатам тестов, Intel удалось серьезно подтянуть быстродействие своего интегрированного решения. HD Graphics в среднем оказывается в 1,5–2 раза производительнее GMA X4500. На первый взгляд архитектурные усовершенствования вычислительной части новинки не столь значительны. Однако здесь следует напомнить, что GPU теперь расположен на том же кристалле, что и контроллер памяти, а это соседство наверняка сказалось на показателях быстродействия. На 900 МГц новое видеоядро Intel демонстрирует схожие результаты с таковыми у GeForce 9300 – чипсета для платформы Intel, который ранее наряду с модификацией 9400 считался самым производительным в своем классе. При частоте 733 МГц (штатная для Core i3 и большинства Core i5) HD Graphics несколько уступает конкуренту от NVIDIA, но не оставляет шансов мейнстрим-набору логики AMD 785G. Однако получить дополнительные кадры в cекунду последнему может помочь наличие локальной памяти SidePort, которая, как правило, дает еще 5–10%-ный прирост производительности. Кроме того, в активе AMD есть чиспет 790GX с графическим ядром, работающим на более высокой частоте. А вот возможности ядра GeForce 8200, используемого в nForce 980a, уже заметно слабее – по скорости в 3D его прямой конкурент GMA X4500.

Учитывая полученные результаты в довольно сложных современных играх, наверное, будет лишним говорить о том, что встроенный GPU справится не только с казуалками. World of WarСraft очень пристойно работает с настройками чуть ниже средних, количество кадров в секунду сильно зависит от локации и колеблется на уровне 20–50. Аналогичная ситуация и в EVE Online. Акселератор выдерживает и довольно серьезную боевку в браузерной Quake Live. Более того, с HD Graphics можно вполне сносно поиграть в «S.T.A.L.K.E.R.: Зов Припяти» в режиме со статическим освещением. В последнее время Intel активнее сотрудничает с разработчиками игр, что позволяет надеяться на улучшение производительности в будущих проектах. Конечно, нельзя говорить о том, что новый графический адаптер способен конкурировать с дискретными видеокартами в плане быстродействия, но в своем классе это вполне достойное решение.

Итоги

В новой инкарнации возможности интегрированного видео от Intel заметно улучшились. Помимо серьезного увеличения производительности, следует отметить и наращивание функциональности встроенного решения. Фактически HD Graphics обладает всеми параметрами, необходимыми для современной интегрированной графики. Безусловно, революции здесь не произошло и встроенный GPU по-прежнему неприемлем для геймеров, но и сугубо офисным решением его уже никак не назовешь.

С выходом HD Graphics компания Intel больше не дает повода конкурентам говорить об ограниченной функциональности или недостаточной производительности ее интегрированного видео. Теперь основным предметом дискуссий будет вопрос цены. И здесь действительно есть еще к чему стремиться. Было бы наивным полагать, что встроенный адаптер вам достается бесплатно. Формально так оно и есть, однако текущая совокупная стоимость материнской платы и CPU (от $200 и выше) скорее говорит о том, что производитель в накладе не остается. Тем не менее хороший выход годных кристаллов и двухчиповая компоновка Clarkdale позволяет сделать вывод об относительно невысокой себестоимости новых процессоров и, соответственно, надеяться на то, что со временем в продаже появятся и более доступные решения.

Конфигурация тестового стенда
Процессоры Intel Core i3-530, Core i5-661, Core 2 Duo E8500, AMD Athlon II X4 620
Материнские платы ASUS P5Q-EM, Gigabyte GA-H57M-USB3, Gigabyte GA-MA785GT-UD3H, MSI NF980-G65, ZOTAC GF9300-I-E
Оперативная память 2×2 ГБ Kingston (KHX8500D2T1K2/4G и KHX1600C8D3K2/4GX)
Накопитель Samsung SpinPoint HD103SI, 1 ТБ
Блок питания Seasonic M12D-850, 850 Вт
Монитор Samsung SyncMaster 305T

itc.ua

Интегрированная и дискретная графика в ноутбуках:

необходимость и достаточность в реальных задачах

При покупке ноутбука одним из важнейших вопросов для любого покупателя является выбор типа графического ядра: интегрированного или дискретного. В случае настольных ПК всё очень просто: если пользователь собирается играть в игры или работать в профессиональных CAD и 3D-пакетах, то ему обязательно нужна дискретная (внешняя) видеокарта. Да и заменить её другой в случае апгрейда можно легко.

С другой стороны — интегрированная графика стала уже практически бесплатной, и её наличие в настольном компьютере никак не помешает, а даже может помочь при создании мультимониторных систем, добавив один-два «лишних» вывода на мониторы. Или, к примеру, позволит какое-то время обойтись без внешней видеокарты в процессе апгрейда.

С мобильной графикой всё несколько иначе, да и сложнее. Разница в стоимости ноутбуков с дискретными и интегрированными видеокартами не настолько велика, по сравнению со стоимостью настольных видеокарт среднего и верхнего ценового диапазона, которые обычно приобретаются для игр на «больших» ПК.

Зато в ноутбуках очень важна не только максимальная производительность, но и продолжительность работы при питании от батареи. И тут у мобильной интегрированной графики есть преимущество, которое отсутствует у таких решений на настольных компьютерах, где никаких батарей нет и автономная работа невозможна (кроме случая с ИБП, но и в этом случае время не очень важно).

Большинство пользователей не всегда способно разобраться, какой видеоадаптер в ноутбуке им нужен. Некоторые считают, что дискретное графическое решение ускорит работу и в офисных задачах, а другие не видят особенной разницы в 3D-производительности между интегрированными и дискретными мобильными видеокартами в современных играх, так как между 10 и 20 кадрами в секунду разница хоть и двукратная, но оба значения не позволят комфортно поиграть в динамичные игры.

Кроме того, даже в ноутбуках сейчас очень важны способности графических решений по аппаратному ускорению воспроизведения видео в «тяжёлых» форматах, вроде дисков Blu-ray и... скажем так, их производных. Ведь если настольные ПК зачастую обладают мощными CPU, которые способны справиться даже с полностью программным декодированием HD-видео с высоким битрейтом, у мобильных CPU обычно лишней вычислительной «дури» нет, и им весьма желательна помощь со стороны GPU.

Вот, собственно, все эти вопросы мы и хотим рассмотреть в сегодняшнем материале. И постараемся объективно протестировать интегрированную и дискретную мобильную графику в большом наборе реальных приложений и оценить достоинства и недостатки таких решений с точки зрения обычного пользователя. Чтобы каждый сомневающийся смог для себя решить, на какой вид мобильной графики ему стоит обратить своё внимание.

Конфигурация использовавшихся в тестах ноутбуков

Исходя из простой логики, для сравнения мобильной интегрированной и дискретной графики нам нужны два идентичных ноутбука, достаточно мощных и современных, отличающихся друг от друга лишь видеоядром. Ну или один ноутбук с возможностью переключения между интегрированной и дискретной графикой, что сейчас стало довольно распространённым решением.

В нашем тестировании использовались два ноутбука компании Asus, один из которых использует интегрированное в CPU видеоядро компании Intel, а второй отличается лишь установленной в него дискретной видеокартой Mobility Radeon от компании AMD (ну и отключенным интегрированным в процессор видеоядром, разумеется).

Ноутбуки моделей K52F и K52Jr от компании Asus внешне абсолютно одинаковы, и их отличают только надписи на наклейках. Давайте рассмотрим технические характеристики выбранных моделей, чтобы убедиться в правильном выборе для нашей сегодняшней задачи:

 Asus K52FAsus K52JrПроцессорЧипсетОперативная памятьЭкранВидеоадаптерЖесткий дискОптический привод Средства коммуникацииАккумуляторОперационная система

Intel Core i3 350 (2.26 ГГц, 3 МБ L3, 2 ядра/4 потока)

Intel HM55 Express

2+1 ГБ DDR3-1066, двухканальный доступ

15,6", разрешение 1366x768, LED-подсветка

Интегрированный Intel HD Graphics, до 1 ГБ буфер в ОЗУ, поддержка DirectX 10

Дискретный ATI Mobility Radeon HD 5470, 1 ГБ выделенной GDDR3 памяти, поддержка DirectX 11

Seagate ST9250315AS (250 ГБ, 5400 об/мин, SATA-II)

DVD Super Multi (Optiarc RW AD-7580S, SATA)

DVD Super Multi (MATSHITA UJ890AS, SATA)

Gigabit Ethernet (10/100/1000 МБ/c), Bluetooth 2.0+EDR, WiFi 802.11b/g/n

литиево-ионный шестиэлементный ёмкостью 4400 мАч, 48 Вт-ч

Microsoft Windows 7 Home Basic

Собственно, из этого неполного списка характеристик полученных нами для тестов ноутбуков Asus нас интересуют только отличия, да и то не все. К примеру, тесты графики совсем никак не могут зависеть от применённого в конкретной модели DVD-привода. Поэтому мы считаем, что чистота эксперимента не нарушена, и можно сказать, что отличие между K52F и K52Jr заключается только в видеоподсистеме. Посмотрим, что о применённых графических решениях рассказывает диагностическая утилита GPU-Z:

Сразу видно, что эта утилита предназначена скорее для топовых настольных ускорителей. В нашем случае она показывает лишь часть данных, при этом не все цифры показывает верно. Тем не менее, основные данные там есть, а особенно забавными являются данные о времени анонса — самое начало января 2010, когда большинство из нас с вами всё ещё пребывало в праздничном состоянии.

Но перейдём к краткому описанию конфигурации тестовых моделей ноутбуков. Core i3-350M — это мобильный процессор семейства Arrandale от компании Intel, в которое входят модели Core i3, i5 и i7. Это мобильные аналоги процессоров Clarkdale, использующие тот же 32-нм техпроцесс, который позволил снизить энергопотребление мобильных процессоров до 18-35 Вт, в зависимости от конкретной модели. Core i3-350M потребляет до 35 Вт, в эту цифру входят потребности и CPU и GPU.

Все процессоры семейства Arrandale имеют два процессорных ядра, поддержку технологии Hyper Threading, а также 3-4 МБ кэш-памяти третьего уровня (L3). Core i3-350M работает на частоте 2,26 ГГц, имеет 3 МБ кэш-памяти два ядра и способен одновременно исполнять четыре потока при помощи Hyper Threading. В отличие от старших собратьев семейства Core i5, Core i3-350M не поддерживает технологию Turbo Boost, которая автоматически повышает частоту CPU в случае необходимости.

Но в рамках этого материала для нас с вами важнее всего то, что новые процессоры Intel оснащаются встроенным графическим ядром HD Graphics. Это один из первых CPU с такой степенью интеграции, пусть и не на уровне кристалла. Впрочем, для пользователей нет вообще никакой разницы, куда интегрировано видеоядро: в процессор или чипсет. В итоге он получает готовое решение — ноутбук. Мы уже довольно подробно рассматривали графическое ядро HD Graphics, встроенное в процессоры Intel Clarkdale и Arrandale, поэтому в этой статье остановимся на его характеристиках лишь кратко.

Новые процессоры имеют в своём составе не только встроенные контроллеры памяти и шины PCI Express, но и графическое ядро (не в одном кристалле, но в одном чипе). При этом интересно, что ядро CPU выполнено по техпроцессу 32 нм, а видеоядро — по 45 нм. Само по себе ядро архитектурно не очень то отличается от GMA X4500, в его состав входит 12 блоков потоковой обработки (против 10 у GMA X4500/HD) и 4 блока ROP, чип поддерживает возможности DirectX 10 API.

Зато в HD Graphics инженеры компании сделали ещё более гибкое управление частотами и питанием, что позволило снизить уровень энергопотребления и тепловыделения — очень важную характеристику для мобильных решений. И даже по сравнению с настольными Clarkdale, GPU ядро в Arrandale может более тонко регулировать производительность и энергопотребление. Хотя у мобильного Core i3 нет поддержки технологии Turbo Boost, повышающей частоту у CPU ядра, зато подобная возможность применяется для встроенного Intel HD Graphics. Базовая частота видеоядра в i3-350M — 500 МГц, а максимальная — 667 МГц.

Название ядра Intel HD Graphics как бы говорит нам о том, для чего оно предназначено в первую очередь. Там нет ничего об играх и других 3D-применениях, зато есть магическое (хотя и уже немного устаревшее) сочетание HD, которое намекает на возможности по видеодекодированию. Впрочем, и по 3D-скорости в составе Asus K52F мы имеем приличное интегрированное видеоядро с поддержкой DirectX 10 и унифицированной шейдерной модели версии 4.0. Посмотрим, что за видеокарта установлена в ноутбуке с дискретным видео:

ATI Mobility Radeon HD 5470 — это представитель новой, пятой серии мобильных видеокарт компании AMD, обладающей поддержкой DirectX 11. В рамках раздела «Видеосистема» мы давно и очень тщательно рассмотрели все основные архитектурные особенности этой линейки.

Модель с индексом 5470 предназначена для использования в игровых ноутбуках начального уровня. Важнейшим отличием мобильного решения Radeon HD 5470 являются серьёзно улучшенные показатели энергоэффективности, по сравнению с предыдущим поколением мобильных видеокарт AMD. Во многом это было достигнуто переходом производства на 40-нм технологический процесс.

По своим характеристикам HD 5470 скорее похожа на обновленную HD 4570, она имеет то же количество потоковых процессоров — 80 штук, а также восемь текстурных блоков и четыре блока ROP (на скриншоте GPU-Z их восемь, но по спецификации AMD их там именно четыре). Благодаря более совершенному техпроцессу, удалось увеличить частоту ядра до 750 МГц. Шина памяти у этого адаптера 64-битная, ядро поддерживает память стандартов GDDR3 и GDDR5, в нашем случае используется 1024 МБ выделенной видеопамяти стандарта GDDR3, работающей на частоте 800 (1600) МГц.

Видеоадаптер ATI Mobility Radeon HD 5470 включает в себя блок Unified Video Decoder второго поколения (UVD 2), который способен полностью аппаратно декодировать видеоданные современных форматов H.264 и VC-1 в разрешении до 1920х1080 (FullHD). Правда, преимуществом дискретных видеокарт это уже не является, так как ровно этими же возможностями хвастается и интегрированное в CPU ядро от Intel. Оно также поддерживает полностью аппаратную поддержку декодирования всех форматов видео (MPEG2, H.264 и VC-1). То есть по видеовозможностям решения теоретически равны, а что будет на практике — рассмотрим далее.

Что и как тестировать?

Вопрос методики сравнения дискретной и мобильной графики не так прост, как кажется. Нужно или тестировать только то, что интересует конкретную категорию пользователей (к примеру, любителей игр), или стараться охватить как можно больший спектр приложений, чтобы получить необычные и интересные результаты.

Вдруг всплывёт разница там, где мы её не ждём и даже не предполагаем, что она там в принципе может быть? К примеру, в каких-то приложениях, активно использующих ОЗУ, вполне может сказаться отбор части пропускной способности основной памяти интегрированным видеоядром, которое откусывает от неё кусок для своих нужд. Или что-то ещё менее очевидное и ожидаемое.

Поэтому, в данном материале мы решили провести максимальное количество тестов, даже в тех приложениях, где между двумя ноутбуками, отличающимися только видеоядрами, не должно быть никакой разницы, исходя из теории. И уж, естественно, мы не смогли обойти стороной и вопрос продолжительности работы от батарей.

Несколько лет назад все вопросы к любой интегрированной графике ограничивались качеством 2D-картинки и тем, насколько серьёзно снижается производительность при использовании видеоядром части общей памяти. И действительно, тогда CPU и GPU делили друг с другом единственный канал к общей памяти, что приводило порой к плачевному снижению производительности.

Но сейчас даже в ноутбуках используется двухканальный доступ к ОЗУ, и обращение к ней со стороны GPU снижает общую производительность системы лишь на доли (ну максимум — единицы) процента. А к качеству картинки претензии были совсем уж в древнее время аналоговых разъёмов и мониторов, что никак не касается ноутбуков.

Но за прошедшее время требования к возможностям и производительности встроенной графики со стороны пользователей серьёзно увеличились. Вслед за дискретными видеокартами улучшают свои функциональные и вычислительные возможности и видеоядра, встраиваемые в чипсеты и процессоры. Взять хотя бы ту же банальную 2D-картинку, которая давно является основным применением любого видеочипа. Сейчас мало просто выводить картинку на монитор, нужно уметь аппаратно ускорять этот вывод. Иными словами, поддержка специфического ускорения операций и для интегрированного видео теперь стала обязательной. Немалую роль в этом сыграл интерфейс Windows Aero, появившийся в операционной системе Windows Vista, а также другие 2D- и 3D-интерфейсы, широко распространённые в последнее время.

Очень важна поддержка современных цифровых интерфейсов вывода, причём не одного, а сразу нескольких одновременно. Так, на протяжении многих лет единственным интерфейсом для подключения внешнего монитора к ноутбуку был VGA-выход. Аналоговый, со всеми его недостатками в виде различных помех, сниженного качества при высоких разрешениях и т.д. Кроме того, от цифровых видеовыходов сейчас уже требуется не только вывод картинки, но и звука (HDMI, DisplayPort).

Но проблем с 2D-картинкой уже давно нет даже у интегрированного мобильного видео, а вот с ускорением 3D в современных играх дела обстоят всё ещё намного хуже. Хотя производители интегрированной графики и ноутбуков на их основе любят показывать, что их решения позволяют играть в игры, но настройки качества в играх они при этом подбирают пригодные для демонстрации красивых цифр средней частоты кадров, а не красивой картинки. Причём, никто из них не станет приводить цифры из наиболее технологичных проектов, вроде Crysis. А вот мы это сделаем с лёгкостью.

А вот уж с чем интегрированная графика уже обязана справляться столь же хорошо, как и дискретная, так это с аппаратным ускорением декодирования видеоданных во всех важных форматах. Эта необходимость добавилась не так давно, с появлением контента в высоком разрешении (HD), так как ускорение DVD (MPEG2) уже давно и успешно было освоено. А сейчас уже почти каждый видеочип имеет в своём составе специальный блок для декодирования HD-видео.

Современные пользователи предъявляют самые жёсткие требования к видеодекодированию. Любой GPU сейчас должен уметь декодировать видеоданные с максимальным битрейтом и разрешением. То есть параметрами, соответствующими видео, записанному на диски Blu-ray. Даже если соответствующего привода нет в ноутбуке, ведь есть и другие источники, о которых не принято говорить громко. Для этой же задачи крайне полезна и возможность вывода звука через разъём HDMI или DisplayPort, и этой возможностью обладают оба видеоадаптера, используемые в наших тестах.

В общем, в итоге мы решили использовать нашу обычную методику для тестирования ноутбуков, в которую входит широкий набор разнообразных тестов, дополнив её множеством игровых приложений (так как именно в 3D-графике и возможна максимальная разница между интегрированным и дискретным видео). Также мы взяли большее количество видеороликов в различных форматах и решили тщательнее исследовать продолжительность работы при питании от встроенной батареи в нескольких режимах. Более того, в сегодняшнем материале мы даже попробуем в очередной раз «ускорить Интернет».

Производительность в синтетических тестах

Как обычно, начинаем мы с синтетических тестов, которые показывают производительность в искусственных условиях, позволяя чётко ограничить влияние различных подсистем друг на друга (CPU от GPU и наоборот). В этом разделе статьи мы рассмотрим результаты синтетических тестов производительности системы в пакетах PCMark Vantage, 3DMark 06 и CINEBENCH.

Но для начала посмотрим на рейтинги производительности в операционной системе Windows 7. Это наиболее простой метод определения производительности в синтетических условиях, доступный на каждой системе с установленной Windows 7 или Vista.

Рейтинг Windows 7

Asus K52F (Intel HD)

Asus K52Jr (HD 5470)

ПроцессорОперативная памятьГрафика AeroГрафика игроваяЖесткий диск

6.3

6.3

5.5

5.5

4.4

5.1

5.1

5.9

5.8

5.8

Встроенный тест Windows подтверждает полную идентичность двух моделей ноутбуков Asus, которые мы использовали, за исключением их видеосистем. Тесты, показывающие производительность CPU, RAM и HDD, были выполнены с равными результатами.

Что касается оценок графической производительности, то тут разница есть, хотя и не очень большая. Меньше, чем можно было ожидать от сравнения интегрированной и дискретной графики. Особенно это касается «игровой» 3D-графики. Графические подтесты Aero и «игровой» показали одинаковое преимущество дискретного видеоадаптера ATI над интегрированным решением Intel — порядка 15%.

Это весьма небольшое преимущество, которое можно объяснить разве что недостаточно продуманным тестом в Windows. Впрочем, ничего особенного мы от него и не ожидали. К 3D-производительности мы ещё вернёмся, а сейчас рассмотрим результаты общесистемного теста PCMark Vantage, и итоговый результат, и отдельно по подсистемам. Эти подробные цифры помогут нам оценить производительность различных компонентов ноутбука и их вклад в общую оценку.

PCMark Vantage

Asus K52F (Intel HD)

Asus K52Jr (HD 5470)

PCMark Score Memories Score TV and Movies Score Gaming Score Music Score Communications Score Productivity Score HDD Score

3925

4445

2541

2916

3210

3242

2774

3648

4487

4659

3658

3717

3940

4087

2754

2760

Такое впечатление, что общий счёт в этом тесте сделан для энтузиастов всего самого-самого быстрого и годится разве что для их рекордов. Никакого толка от такого сравнения не видно. Чего не скажешь о подробных результатах, которые сразу указывают на сильные и слабые стороны решений.

В нашем случае, разные результаты получились в «игровом», «музыкальном» подтестах и подтесте оперативной памяти. Разница в игровом тесте вполне понятна, хотя она также кажется слишком заниженной — даже до трети преимущества над интегрированным видеоядром карта Radeon не дотянула. Видимо, это связано с усреднённой оценкой, замеряющей в «играх» и скорость HDD, и CPU. Более интересными нам кажутся другие два результата, которые мы выделили в таблице.

Низкий результат ноутбука K52F с интегрированным видео в тесте памяти объясняется двумя причинами. Во-первых, результат зависит от GPU, так как в тесте одновременно используется перекодирование видео и обработка изображений. А вторая причина заключается в том, что встроенное видеоядро при работе отнимает часть полосы пропускания общей памяти для своих нужд, так как не имеет собственного выделенного буфера. Видимо, поэтому в данном синтетическом тесте мы видим отставание в 15%. Мы проверим эту цифру в тестах приложений, где ПСП также может быть важна.

А больше всего нас удивила некоторая разница в подтесте «Music». Она небольшая, лишь около 4%, но всё же заметная. Неужели AMD изобрела ускоритель MP3/WMA и засунула его в HD 5470? Нет, конечно. Результат снова объясняется просто — Futuremark сделала вроде бы чисто синтетический тест, но не совсем. На результат подтеста «Music» влияет и скорость видеоподсистемы и памяти. Что возвращает нас к тому же выводу — одновременная работа интегрированного видеоядра и активное использование памяти процессором может приводить к небольшому снижению производительности.

Но давайте рассмотрим результаты 3DMark 06, где разница между интегрированной и дискретной графикой впервые должна быть ощутимой. Этот тест очень сильно нагружает почти исключительно видеоподсистему и зависит только от её производительности. Приводим только цифры, относящиеся к тестированию GPU:

3DMark 06

Asus K52F (Intel HD)

Asus K52Jr (HD 5470)

ScoreGT1GT2HDR1HDR2

1557

4047

3.8

10.7

4.3

12.2

5.7

15.9

6.7

17.8

Хотя абсолютные цифры средней частоты кадров весьма низки у обоих ноутбуков, хорошо видно, что производительность выделенной видеокарты Radeon HD 5470 в тесте 3DMark 06 в среднем получается почти втрое (2.6-2.8 раза) выше, чем скорость графического ядра Intel HD Graphics, встроенного в процессор Core i3-350M.

3DMark 06 слишком тяжёл для Intel HD Graphics, и, что интересно, соотношение FPS остаётся почти одинаковым во всех подтестах. Вероятно, в современных игровых приложениях мы как раз и увидим примерно такую разницу в производительности интегрированного и дискретного видеорешений — Radeon должен быть быстрее до 2,5-3 раз.

Следующим рассмотренным тестом будет CINEBENCH. Собственно, это не совсем уж «чистая» синтетика, а скорее тест производительности, основанный на коде широко распространённого приложения CINEMA 4D — профессионального пакета для создания и рендеринга трёхмерных изображений и анимаций.

CINEBENCH содержит три подтеста: рендеринг при использовании одного ядра CPU, всех ядер CPU (в данном случае выполняется четыре потока на двух ядрах) и самый интересный для нас сейчас подтест OpenGL, использующий рендеринг сложной трёхмерной сцены в реальном времени. Последний тест позволяет оценить производительность графической подсистемы при работе в аналогичных профессиональных пакетах, использующих OpenGL.

CINEBENCH R10

Asus K52F (Intel HD)

Asus K52Jr (HD 5470)

CPUCPU (4 потока)OpenGL

2490

2495

5788

5760

1776

4114

Итак, в процессорных тестах CINEBENCH мы видим практически идентичные результаты, что и должно быть, исходя из теории. Хотя процессор Core i3 имеет лишь два ядра, прирост производительности от «многоядерности» у него получается более чем двукратным. Это объясняется работой Hyper Threading, который позволяет тесту выполнять на двухъядерном процессоре сразу четыре потока.

Но нас сейчас больше интересует подтест OpenGL. И его результаты вполне соответствуют ожиданиям — дискретная видеокарта Mobility Radeon оказалась более чем вдвое (2,3 раза) производительнее, по сравнению с интегрированной Intel HD Graphics. То есть и в профессиональном OpenGL подтверждаются относительные результаты синтетического теста 3DMark 06.

В общем, тестирование в синтетических тестах не принесло неожиданных результатов. Даже странность в «музыкальном» тесте PCMark оказалось довольно легко объяснить. В целом, значительная разница между двумя ноутбуками замечена только в 3D-производительности, ну и небольшая в тесте производительности подсистемы памяти. По результатам синтетических пакетов получается, что ATI Mobility Radeon HD 5470 в 2,3-2,7 раза быстрее Intel HD Graphics в трёхмерных приложениях реального времени.

Производительность в различном ПО

Честно говоря, мы изначально были довольно скептично настроены к тестированию в таких приложениях, как WinRAR и Visual Studio. Ну как может видеоядро повлиять на скорость сжатия и компиляции? Разве что подсистема памяти со слегка уменьшенной ПСП из-за одновременного доступа и CPU и интегрированного GPU может немного снизить общую скорость, но это — единицы процентов, как максимум.

Но чего не сделаешь ради искусства, да и подтвердить любую теорию практикой никогда не помешает. Опять же — для успокоения тестера («ты молодец, и всё делаешь правильно!») такие тесты полезны. Итак, для начала рассмотрим задачи сжатия файлов в двух распространённых архиваторах и компиляции в Visual Studio 2008.

Архивирование и компиляция, мин:сек

Asus K52F (Intel HD)

Asus K52Jr (HD 5470)

7-Zip, макс.сжатие, 670 файлов, 740 МБWinRAR, макс.сжатие, 670 файлов, 740 МБVC2008, компиляция проекта Ogre3D

5:03

4:59

1:56

1:54

8:41

8:43

Ты молодец, и всё делаешь правильно! Ну вот, собственно, что и ожидалось скептично настроенным тестером — никакой разницы по производительности в указанных задачах не обнаружено. Разница во времени компиляции и сжатия между двумя ноутбуками не превышает 1%, что легко можно списать на погрешность измерений.

Ну может быть хотя бы в перекодировании видеоданных формата DV, взятых с бытовой видеокамеры, в распространённые форматы MPEG4 и H.264, разница будет? Да нет, не должна быть, если только приложение не использует возможности видеоядра по декодированию. Но таких в наших тестах вроде бы нет.

Кодирование видео, мин:сек

Asus K52F (Intel HD)

Asus K52Jr (HD 5470)

DivX, DV исходник объемом 637 МБx264, DV исходник объемом 637 МБProCoder, DV исходник объемом 637 МБ

1:23

1:22

2:38

2:37

6:38

8:21

Вот тебе раз... Где мы не ожидали разницы, там её получили. Да какую! В тестах перекодирования видео кодировщиками DivX и x264 ощутимой разницы нет, она в пределах погрешности, как и должно быть. А вот отставание ноутбука с дискретным видео более чем на 25% в ProCoder очень удивило. Ведь даже теоретически такого быть не может, чтобы полостью программное декодирование было медленнее на идентичной системе с дискретной видеокартой по сравнению с интегрированным видео.

А ларчик открывался просто — такая разница получилась (мы её перепроверили трижды) из-за большей загрузки CPU с видеокартой Radeon при включенном режиме предпросмотра, используемого в нашей методике. При конвертации в ProCoder декодируются и выводятся на экран видеоданные в чересстрочном (interlaced) формате. И драйвер компании AMD старается показать картинку в лучшем виде, используя специальные алгоритмы для вывода чересстрочного потока на прогрессивное устройство, загружая CPU больше, чем это делает Intel HD Graphics. Так что при конвертации в ProCoder лучше отключать режим предпросмотра.

Хотелось бы отметить, что в последнее время в программах для кодирования и перекодирования видео делают первые попытки использования мощностей видеочипов для ускорения перекодирования видеоданных из одного формата в другой формат. Но пока что встречается лишь простое использование аппаратного декодирования видео для вспомогательных целей, не слишком значительно ускоряющее процесс перекодирования материала.

Пока что мы не знаем программ, умеющих задействовать в работе ещё и мощь потоковых процессоров GPU при помощи OpenCL, CUDA или DirectCompute, кроме Adobe Premiere Pro CS5, который умеет использовать CUDA на Nvidia Quadro. Такая возможность приносит качественный скачок в производительности перекодирования видео, но пока что ни один программный продукт при помощи мобильных GPU этого делать не умеет. Эти возможности остаются перспективными, и у ATI Radeon в этом смысле есть больший потенциал, по сравнению с Intel HD Graphics.

Adobe Photoshop — это ещё одно приложение из списка тех, в которых ещё совсем недавно было бы трудно ожидать разницы в производительности на идентичных системах с разными видеокартами. Но в версии CS4 этого пакета была внедрена поддержка нескольких GPU-ускоренных функций при помощи OpenGL.

К сожалению, в число этих функций не входит ускорение фильтров и большинства операций, которые используются в нашей тестовой методике, поэтому особой разницы у нас не должно получиться и в этот раз. Но в остальном, работа в GPU-ускоренном Photoshop становится комфортнее, возможности видеочипов используются для быстрого масштабирования, фильтрации выводимого на экран изображения, вращения и т.п.

Adobe Photoshop CS4

Asus K52F (Intel HD)

Asus K52Jr (HD 5470)

blursharplightresizerotateconverttransformfiltersoverall

2:11

2:11

2:00

1:59

2:11

2:11

2:26

2:15

2:34

2:31

2:01

2:02

2:02

2:02

6:40

6:41

2:32

2:29

Вот и очередное подтверждение нашим ожиданиям — разницы между мобильными системами с интегрированным и дискретным видео снова не наблюдается. Хотя, один подтест снова отличился, и на погрешность измерений его результаты не спишешь, да и ошибки быть не может — тест проводился три раза.

Итак, изменение разрешения тестового изображения в системе с дискретным Mobility Radeon HD 5470 было выполнено на 8% быстрее, чем это сделал ноутбук с интегрированным в процессор видеоядром Intel. Не бог весть какая разница, конечно, но сам факт! Похоже что или GPU-ускорение в некоторых операциях Photoshop всё-таки работает, или сказывается одновременный доступ к памяти у ноутбука с встроенным видео. Вывод один — небольшая разница в скорости между дискретным и интегрированным видео в Photoshop всё-таки обнаружилась.

Ускоряем Интернет

Ну раз даже в Photoshop мы обнаружили разницу в скорости на разных видеосистемах, то и Интернет уже наверняка научились ускорять на GPU. Во-первых, сразу вспоминается GPU-ускоренное декодирование flash-видео, самым известным примером применения которого является видеопортал YouTube. Таким ускорением хвастается версия Adobe Flash 10.1, доступная пока что в виде предварительной версии (release candidate).

Судя по информации с сайта Adobe, аппаратное ускорение декодирование flash-видео в формате H.264 доступно на видеосистемах разных производителей, в число которых входит и AMD и Intel. Для Radeon нужно лишь наличие блока декодирования UVD2 и драйвер ATI Catalyst, начиная с версии 9.11, а для интегрированных чипсетов и процессоров Intel Core со встроенным видеоядром Intel HD Graphics, также нужна лишь свежая версия драйверов. И всё заработает, как минимум — в 32- и 64-битных системах Windows Vista и Windows 7.

Другими тестами ускоренного Интернета стали Flying Images и Map Zooming со страницы Internet Explorer 9 Platform Preview. Они вроде бы тоже должны ускоряться на GPU, судя по описанию от компании Microsoft. Причём, будущая версия Internet Explorer 9 будет использовать GPU-ускоренную графику только в Windows 7 и Windows Vista, так как ранние версии операционных систем Windows не поддерживают драйверную модель WDDM, обязательную для IE9.

Нам обещано ускорение задач рендеринга на GPU при помощи Direct2D и DirectWrite API. При этом задачи отрисовки двумерного изображения будут переложены с CPU на GPU, а с обработкой изображений графические ядра справляются значительно быстрее универсального процессора. В первом тесте одновременно отрисовывается несколько изображений с масштабированием, а во втором рекурсивно меняется масштаб карты с сайта Bing (аналог Google maps).

HTML5, Flash

Asus K52F (Intel HD)

Asus K52Jr (HD 5470)

IE9 Tech Preview, Flying ImagesIE9 Tech Preview, Map ZoomingOpera 10.5, Flying ImagesOpera 10.5, Map ZoomingFlash 10.1, 1080p видео

64 FPS

64 FPS

18 итераций/мин

20 итераций/мин

66 FPS

66 FPS

21 итераций/мин

22 итераций/мин

45% CPU usage

48% CPU usage

Ну вот не видно работы GPU-ускоренного Интернета, хоть ты тресни! Вроде уже несколько лет ускоряем Интернет, а он всё не ускоряется... Мы ещё и в браузере Opera протестировали, который с определённой версии также обладает поддержкой GPU-ускорения, но нет — особенной разницы между двумя ноутбуками не обнаружено. Или обе видеокарты ускоряют Интернет одинаково хорошо, или одинаково не ускоряют его вовсе.

То же самое касается и попыток аппаратно ускорить воспроизведение flash-видео с YouTube — ну не видно разницы на разных GPU, а 3% — погрешность измерения. Впрочем, в тесте Map Zooming у дискретной Radeon вроде бы всё же есть маленькое преимущество перед интегрированным ядром Intel. По крайней мере, нам хочется, чтобы это было оно, ведь 5-11% на погрешность уже не тянут. Возможно, производительность в Интернет-тестах не упирается в видеокарту, и разница между разными решениями просто не видна. И вполне может быть, что на нетбуках с маломощными процессорами она будет больше.

Воспроизведение видеоданных

К тестам воспроизведения видео высокого разрешения мы подошли строже, чем это принято в нашей методике для ноутбуков. Для них важно, чтобы декодирование даже самых тяжёлых форматов аппаратно поддерживалось видеоядром, в том числе интегрированным. Хотя даже недорогой двухъядерный процессор справляется с такой работой сам, но даже частичное декодирование на GPU способно увеличить время работы в автономном режиме, весьма важное для мобильных устройств.

Понятно, что с аппаратным ускорением видео на ATI Radeon нет никаких проблем, оно давно поддерживается драйверами компании AMD, и особых требований не предъявляет. А вот Intel HD Graphics поддерживает DXVA-ускорение только в операционных системах Windows Vista и Windows 7. Впрочем, с ноутбуками в этом смысле всё просто — сейчас на них ставят только Windows 7 в любом случае.

Но есть у интегрированной графики Intel и другие ограничения. Некоторое время назад, встроенные видеоядра этой компании умели ускорять видео только в топовых плеерах, вроде PowerDVD и WinDVD, а в распространённых бесплатных плеерах, наиболее ярким примером из числа которых является MPC-HC, DXVA-ускорение на графических решениях Intel заработало не так уж давно и с ним до сих пор возможны некоторые проблемы.

Давайте проверим, что получается на практике. Для тестов мы взяли один файл формата MPEG2 с чересстрочным FullHD-видео, один файл формата VC-1 высокого разрешения, и набор роликов наиболее распространённого формата H.264 (MPEG-4 AVC) с разным разрешением и битрейтом.

Декодирование видео

Asus K52F (Intel HD)

Asus K52Jr (HD 5470)

MPEG2 1080iVC-1 1080pH.264 480pH.264 720pH.264 1080p (20 Mbps)H.264 1080p (40 Mbps)

5%

11%

28%

7%

7%

6%

19%

18%

7%

6%

8%

7%

Итак, рассмотрим результаты по порядку. С MPEG2-ускорением любые современные GPU справляются очень легко, особенно что касается производительности. Отставание Radeon в случае MPEG2 файла объясняется более качественным алгоритмом устранения чересстрочности (deinterlacing — деинтерлейсинг). Смысл в этом есть, так как огрехи в качестве изображения раздражают пользователя намного больше, чем лишние несколько процентов загрузки процессора.

Зато при декодировании ролика формата VC-1 мы увидели совсем другую картину. Встроенное в процессор Core i3 видеоядро на данный момент не умеет аппаратно декодировать видео в формате VC-1 в плеере MPC-HC, который мы использовали. Драйверы использовались самые свежие, так что проблема с VC-1 пока что не решена полностью. А 28% — это уже приличная загрузка для столь мощного процессора, которая может вызвать заметное снижение времени работы от батарей.

Зато видеоролики в формате H.264 и интегрированная графика Intel и дискретное решение ATI Radeon выполняют с примерно одинаковой загрузкой CPU. При проигрывании всех роликов, за исключением видео в разрешении 720p, которое использовало программное декодирование, всегда работает DXVA-ускорение. К сожалению, у Intel HD Graphics в связке с MPC-HC есть проблемы с качеством видео в формате H.264 — некоторые ролики воспроизводятся с заметными артефактами.

В остальном можно сказать, что интегрированное мобильное видеоядро справляется с декодированием HD-видео довольно неплохо. Даже самый тяжелый видеоролик с максимальным качеством и битрейтом, который при программном декодировании вполне способен загрузить оба ядра CPU, на HD Graphics выполняется плавно, с загрузкой центрального процессора менее 10%, и это — очень хороший результат.

Подводя выводы по тестам аппаратного ускорения воспроизведения видеоданных, отметим некоторые проблемы с качеством у интегрированного ядра Intel. Вероятно, связанные с недоработками в драйверах. Но в остальном средний пользователь не должен ощутить разницу между дискретным и интегрированным видеоядрами. Время работы от батареи в режиме просмотра кино мы также замерили — см. ниже по тексту.

Производительность в играх

Настало время для самого интересного раздела в статье, как нам кажется. Ведь по 2D-производительности и ускорению видео интегрированные графические ядра давно догнали дискретные решения. А вот по 3D-производительности отставание до сих пор довольно велико. Даже с учётом того, что ATI Mobility Radeon 5470 является далеко не самой производительной мобильной видеокартой, можно предположить её безоговорочную победу в игровых тестах.

Впрочем, не будем забегать вперёд, вдруг интегрированная графика Intel нас удивит? В любом случае, нужно воспринимать производительность интегрированного видео в играх скорее в виде ориентира, дающего понять, какой производительности можно ожидать в конкретной игре и при каких настройках. Естественно, вряд ли кто-то будет всерьёз выбирать ноутбук для игр, рассматривая модели с интегрированными видеоядрами.

Все современные игры в средних разрешениях, начиная со средних настроек качества, всегда будут ограничены скоростью GPU, а не CPU, поэтому они как раз наглядно покажут нам разницу между дискретной и интегрированной мобильной графикой. Производительности даже дискретного решения Radeon HD 5470 не всегда достаточно в протестированных играх, но в таком случае пользователь сможет поиграть в современные игры при сниженных настройках качества.

Игровых тестов в нашем материале будет много, так как это — чуть ли не единственный раздел, где ожидается значительная разница в производительности между Asus K52F и K52Jr. Для начала рассмотрим несколько устаревших игр, чтобы понять, на что можно рассчитывать в таких случаях. Дискретное видео достаточно быстрое и для максимальных настроек в старых играх, а вот интегрированная графика может не справиться даже в таких условиях. Первой игрой будет Serious Sam 2:

Ну что же, разница между интегрированным решением и отдельной видеокартой даже в случае старой игры заметна сразу. Средняя частота кадров на двух протестированных ноутбуках отличается более чем вдвое. Что хоть и меньше, чем было в 3DMark 06, но всё же разница ощутимая.

Модель с встроенной графикой Intel позволит комфортно играть в Serious Sam 2 лишь при средних настройках качества, а дискретное видео Radeon HD 5470 отлично справляется с задачей даже при максимально возможном качестве. Вот вам и качественная разница между разными типами мобильной графики. Смотрим дальше — X3: Terran Conflict.

В этой игре разница в производительности 3D-рендеринга между интегрированным и дискретным GPU несколько меньше — около двух раз. Но вывод остаётся ровно тем же: интегрированное видео с трудом тянет игру в низких настройках, а дискретная видеокарта Radeon справляется с рендерингом высокого качества даже лучше, чем Intel HD Graphics при самых низких настройках.

Чем дальше мы продвигаемся, тем игры будут новее и требовательнее. Следующим игровым тестом является довольно распространённая игра Call of Duty: Modern Warfare (ещё первая часть). Для тестов использовалась демонстрационная запись многопользовательской битвы. Сможет ли ноутбучная графика показать приемлемый FPS в таком случае?

Смогла, но только дискретная видеокарта. В целом, картина ровно та же — разница в скорости между интегрированным и дискретным видео порядка 2-2,5 раз. Но главное не это, а то, что встроенное видео Intel HD Graphics попросту неспособно обеспечить в этой игре плавную частоту кадров даже при минимальных настройках качества.

В отличие от дискретной Mobility Radeon HD 5470, которая легко справляется с задачей при минимальных настройках и вполне сносно работает в режиме максимального качества. То есть она позволит подобрать игровые настройки, близкие к максимальным, при сохранении приемлемой производительности. Отличие снова скорее качественное, чем количественное.

А вот в бенчмарке Call of Juarez, использующем возможности DirectX 10, даже дискретная видеокарта не справилась с задачей с приемлемой частотой кадров. 25,5 FPS при низких настройках — этого явно недостаточно для шутера. Впрочем, хоть как-то можно будет играть, в отличие от слайд-шоу на интегрированном видео. 5-9 кадров в секунду — это именно оно.

Но не все игры столь требовательны к мощности GPU. Существует большое количество вполне современных проектов, которые сносно «бегают» даже на слабых системах. Обычно это мультиплатформенные проекты, рассчитанные в том числе и на работу на игровых консолях, аппаратная начинка которых выпущена довольно давно и отстаёт от современного ПК-железа. Одной из подобных игр является аркадный авиасимулятор H.A.W.X.

Разница по производительности в разных режимах не меняется и в H.A.W.X. Дискретное видео в 2,4-2,5 раза быстрее интегрированного. Снова мы видим, что Intel HD Graphics способна только на настройки низкого качества, а вот Radeon HD 5470 приятно радует тем, что обеспечивает высокую частоту кадров даже в условиях максимальных настроек (за исключением дополнительных возможностей DirectX 10, разумеется).

Игра Resident Evil 5 хоть и мультиплатформенная, но довольно требовательна к мощности GPU. В итоге, интегрированный GPU от Intel обнаруживает полную неспособность обеспечить хотя бы 25-30 FPS в любых настройках. Зато Radeon HD 5470 неплохо справляется даже с игровыми настройками среднего качества. Пусть 31-38 FPS — это далеко не предел мечтаний, но поиграть на ноутбуке с такой видеокартой вполне можно.

Ещё одна мультиплатформенная игра на том же движке — Street Fighter IV. Она относится к жанру файтинг (fighting), который отличается тем, что для достаточно комфортного игрового процесса требует порядка 60 кадров в секунду.

Мы видим, что интегрированное мобильное видеоядро снова не может предоставить приемлемой частоты кадров, не дотягивая даже до отметки 30 FPS в любых условиях. Дискретная же Radeon обеспечивает при низких настройках более чем 60 FPS, а при средних — почти 50 FPS. То есть, вполне можно настроить качество под свои требования и комфортно поиграть. В этой игре дискретная видеокарта оказалась быстрее интегрированной в 2,6 раза.

В Lost Planet относительная производительность интегрированного видео чуть лучше, она обеспечивает частоту кадров лишь вдвое меньшую, по сравнению с HD 5470. Однако с учётом того, что даже Radeon балансирует на грани играбельности (и это — при самых низких настройках!), обеспечивая чуть меньше, чем 30 FPS, интегрированный видеоадаптер можно снова признать недостаточно производительным для любых настроек в этой игре.

Но достаточно уже мультиплатформенных игр, давайте перейдём к ПК-эксклюзивным играм наиболее распространённых жанров — RTS и FPS. Первой по списку у нас идёт стратегия реального времени World in Conflict:

Пожалуй, впервые мы увидели более чем троекратную разницу в производительности между интегрированной графикой Intel и видеокартой Radeon HD 5470. Похоже, World in Conflict можно смело причислить к тем играм, которые практически неиграбельны на интегрированной мобильной графике (хотя для RTS может хватить 23 кадров в секунду, но это — при самых низких настройках качества).

Зато HD 5470 показывает неплохую прыть. Этот дискретный видеоадаптер обеспечивает более 30 FPS в режиме средних настроек качества, что вполне хватит для не слишком спешной стратегической игры. Посмотрим, что получится в современных шутерах от первого лица, которые всегда были наиболее требовательными к мощности GPU...

STALKER: Зов Припяти — как раз пример очень «тяжёлой» для графических процессоров игры. Максимальные настройки в ней способны поставить на колени даже довольно мощные видеокарты на настольных ПК, что уж говорить о мобильных. Тем не менее, графический движок у игры отлично масштабируется и настраивается. Режим самого низкого качества (называется «статическое освещение») позволяет даже интегрированной видеокарте Intel показать достаточную для комфортной игры частоту кадров. Конечно, качеством графики такая картинка впечатлить не может.

А вот средний режим «полного динамического освещения» снижает производительность в разы, и в нём у HD Graphics получается уже слайд-шоу в виде 9 FPS, а HD 5470 показывает производительность на грани играбельности. Но при понижении пары графических настроек со средних до низких, дискретная видеокарта компании AMD вполне сможет обеспечить плавную смену кадров в этой игре.

Хотя Far Cry 2 — это тоже мультиплатформенная игра, но она отличается продвинутой графикой, улучшенной в ПК-версии. Которую с большим скрипом еле тянет интегрированное видео Intel. Даже при низких настройках качества в режиме DirectX 9 уровень играбельности встроенным видео не достигается.

А вот на дискретной видеокарте Mobility Radeon HD 5470 вполне можно поиграть в эту игру. Пусть и на средних настройках, так как при высоком качестве скорость также просаживается до 20 FPS. Но это значит, что можно скинуть несколько игровых настроек с высоких на средние, и получим приемлемую картинку и по качеству, и по скорости рендеринга.

Ну и последней игрой нашего тестирования стала очень тяжёлая для видеокарт Crysis Warhead. К ней также можно в полной мере отнести слова о производительности, написанные про игру STALKER: Зов Припяти. Это ещё одна весьма требовательная к скорости GPU игра. И действительно, даже с самыми низкими настройками качества, доступными в игре, интегрированное ядро от Intel неспособно показать более чем 17 кадров в секунду в среднем, не говоря уже про следующую ступень качества («Mainstream»).

А вот дискретное решение от компании AMD отлично справляется с режимом минимального качества и даже показывает 18 FPS в режиме «Mainstream». Это значит, что можно настроить игру под себя так, что будет обеспечиваться и приемлемый комфорт по плавности видеоряда, но и качество картинки подтянуть выше, чем оно получается при минимальных настройках.

Считаем необходимым добавить несколько слов и о впечатлениях о качестве драйверов интегрированного видео от Intel. К сожалению, проблемы и шероховатости есть и тут. Так, в игре Call of Duty: Modern Warfare не работает полноэкранное сглаживание, а игра Far Cry 2 никак не хочет работать в режиме DirectX 10, зависая при загрузке.

А современные игры Just Cause 2 и DiRT 2 вообще не работают на Intel HD Graphics: первая отказывается запускаться в принципе, а вторая вместо изображения показывает чёрный экран. Всё это говорит о том, что компании Intel нужно ещё работать и работать над программной поддержкой для своих интегрированных GPU.

Выводы по игровым тестам будут очень простые. Разница в производительности между интегрированным видео Intel HD Graphics (неплохим в своём классе) и далеко не самой сильной дискретной мобильной видеокартой ATI Mobility Radeon HD 5470, составила 2-3 раза, в среднем около 2,6-2,7, как показал и синтетический тест 3DMark 06.

Но мы предлагаем вам обратить внимание даже не на эту цифру. А на то, что мобильная интегрированная графика оказалась неспособной обеспечить хотя бы 30 FPS (в режиме самых низких настроек, только разрешение было родным для матрицы ноутбука) в 9 из 12 протестированных игровых приложениях! Выводы сделать несложно, и к этому мы ещё вернёмся.

Время работы от батарей

С производительностью мы вроде бы разобрались. Интегрированный видеоадаптер показал отличные результаты везде, кроме задач 3D-рендеринга в реальном времени (игры и профессиональные 3D-пакеты). Но должно же быть у интегрированной графики преимущество в виде меньшего энергопотребления и большего времени работы от батарей. Тем более, что интегрированное видео в тестовом ноутбуке встроено в процессор, а не чипсет, и просто обязано потреблять очень мало энергии. Самое время это проверить.

Тестирование времени автономной работы проводилось в нескольких режимах. Естественно, мы не обошлись без режима простоя при задействовании максимального профиля энергосбережения (но отключение экрана и «спящий» режим были запрещены). Этот режим имитирует неспешное редактирование текста или чтение с экрана.

Вторым тестовым режимом стал режим активного интернет-сёрфинга с включенной в фоне музыкой, а третьим — весьма востребованный режим просмотра кинофильма в формате H.264 1080p с включенным DXVA-ускорением. Профиль энергосбережения в этих режимах был «сбалансированным», но яркость экрана была установлена на максимум.

Время работы, час:мин

Asus K52F (Intel HD)

Asus K52Jr (HD 5470)

ПростойАктивная работа (2D + аудио)Воспроизведение видео H.264

4:03

3:22

2:11

1:55

1:47

1:43

Итак, в режиме простоя ноутбук с встроенным в процессор видеоядром компании Intel проработал на 20% дольше, чем ноутбук с дискретной графикой Mobility Radeon HD 5470, и в этих условиях у интегрированной графики действительно есть ощутимое преимущество. Пусть видеокартой AMD поддерживается технология PowerPlay, но дискретное решение в условиях простоя всегда будет потреблять хоть и немного энергии, но всё же больше, чем интегрированное.

А вот уже в режиме активной работы 2D-приложений с включенной фоновой музыкой, разница по времени работы от батарей между интегрированным и дискретным решением сокращается до 14%, а при просмотре DXVA-ускоренного видео разница составляет и вовсе менее чем 5% (оба GPU позволяют просмотреть почти двухчасовое видео при работе от стандартных батарей). Вероятно, в видеоядре Intel применены функции энергосбережения, более эффективные именно в режиме слабой нагрузки.

Посмотрим, что получится в режиме максимальной игровой нагрузки. В качестве трёхмерного приложения был выбран встроенный тест производительности в игру Lost Planet, который достаточно сильно нагружает как CPU, так и GPU, и его воспроизведение закольцовано, что отлично подходит для нашей задачи. Мы проверили не только время автономной работы в двух режимах, но и полученную производительность.

Игра Lost Planet, режим Economy

Asus K52F (Intel HD)

Asus K52Jr (HD 5470)

Время работы, час:минПроизводительность, FPS

1:31

1:44

9.1

9.5

Игра Lost Planet, режим Performance

Asus K52F (Intel HD)

Asus K52Jr (HD 5470)

Время работы, час:минПроизводительность, FPS

1:12

1:10

11.8

24.7

А вот в 3D-игре у нас получились весьма любопытные цифры, которых мы, признаёмся, не ожидали. Но результаты верные, мы их перепроверили три раза. В максимально экономичном режиме и дискретная и интегрированная видеокарты обеспечивают примерно одинаковую производительность (9 FPS — это неиграбельно, конечно, но это именно Lost Planet такая требовательная, в других играх будет лучше), зато время автономной работы получилось на 14% больше теперь уже у ATI Radeon HD 5470!

Время же работы в режиме максимальной производительности у нас получилось примерно одинаковое и для Intel HD Graphics, и для ATI Radeon, зато средняя частота кадров, полученная при использовании дискретного решения в этом случае более чем вдвое превосходит средний FPS на ноутбуке с интегрированным видео.

То есть получается, что дискретная Mobility Radeon HD 5470 способна обеспечить или вдвое большую производительность, или на 14% большее время работы от батареи, по сравнению с Intel HD Graphics, при прочих равных показателях. Очень хороший результат для видеоядра из успешного семейства Radeon HD 5000! Оно работает в 3D-режиме явно энергоэффективнее, чем интегрированное в процессор видеоядро Intel.

Давайте попробуем разобраться в причинах таких результатов. По спецификации с сайта AMD, дискретная мобильная видеокарта ATI Mobility Radeon HD 5470 может потреблять до 13 Вт, при использовании видеопамяти типа GDDR3. А вот компания Intel указывает только общее для CPU и GPU ядер максимальное энергопотребление, равное 35 Вт. Понятно, что лишь часть этой энергии идёт на нужды GPU, но вполне возможно, что в игре Lost Planet нагрузка между CPU и GPU распределяется таким образом, что интегрированное ядро Intel HD Graphics в режиме «Economy» потребляет порядка 15 Вт из 35 Вт общих. То есть чуть больше, чем 13 Вт, потребляемых HD 5470. В результате и получается разница по времени работы в пользу дискретного решения.

Есть и другое возможное объяснение, хотя и менее вероятное, на наш взгляд. Графическое ядро компании Intel часть своих графических расчётов может перекладывать на ядро CPU, как это было в их ранних интегрированных в чипсеты видеоядрах, когда вершинные шейдеры исполнялись программно. Возможно, это делается и сейчас, и поэтому энергопотребление у ноутбука с интегрированным видео получилось выше. Но мы всё же считаем, что скорее всего «виновата» лучшая энергоэффективность дискретной Mobility Radeon.

Полученные цифры автономной работы нельзя назвать выдающимися, но для ноутбуков такого класса это обычное дело. Батареи у тестовых ноутбуков были стандартной ёмкости, а увеличение времени автономной работы связано с утяжелением за счет более ёмкой батареи и удорожанием системы. В целом, оба ноутбука показали близкие цифры времени работы от батарей, но решение с интегрированным видеоядром значительно дольше работает от аккумулятора при низкой нагрузке, а модель с дискретной видеокартой может немного дольше «протянуть» в режиме максимального использования CPU и GPU.

Заключение

Попробуем сделать выводы, к которым мы пришли в результате проделанной работы. Скажем сразу, что нам понравились оба видеоядра, и интегрированное от Intel, и дискретное от AMD. Интегрированная графика Intel HD Graphics обладает очень неплохими возможностями по аппаратному ускорению HD-видео, хотя и требующими доработки в драйверах. Также это встроенное в процессор Core i3 видеоядро хорошо справляется с основными задачами ноутбука, ведь далеко не все пользователи собираются играть на мобильном ПК.

При работе в «офисном» режиме GPU от Intel работает без проблем, 3D-реализации интерфейса вроде Aero в Windows Vista работают отлично. И даже поиграть в не слишком ресурсоёмкие игры вполне можно, HD Graphics в новых процессорах Intel предлагает неплохую 3D-производительность для интегрированной графики, которая выросла хотя бы до минимально разумного уровня. Правда, к программной стороне снова есть некоторые претензии — драйверы всё ещё недостаточно оптимизированы для поддержки даже самых популярных игр.

И всё же, любое интегрированное видео — это бюджетное решение, не сопоставимое по скорости 3D-рендеринга даже с младшими моделями дискретных видеокарт. Наши тесты показали, что разница между дискретным и интегрированным GPU такова: дискретный видеоадаптер даёт возможность играть во все 3D-игры, пусть и с невысоким качеством изображения, а интегрированная графика — нет. Иными словами, если от ноутбука ожидается в том числе и игровое применение, то в его конфигурации обязательным пунктом должна быть дискретная видеокарта. И не менее производительная, чем Mobility Radeon HD 5470.

Которая, в свою очередь, удивила нас своей потрясающей энергоэффективностью, что крайне важно для мобильных решений. В нашем тесте дискретная Mobility Radeon HD 5470 оказалась способна обеспечить одно из двух преимуществ на выбор пользователя: либо большее время работы от батареи при одинаковом FPS, либо вдвое большую производительность при сравнимом времени автономной работы. Да и в целом HD 5470 нас порадовала, обеспечив достаточную производительность для большинства протестированных игр, пусть и при не самых высоких настройках качества.

В другом программном обеспечении, если не брать в расчёт трёхмерные игры, для которых дискретный GPU явно подходит в разы лучше, между встроенным в процессор Intel HD Graphics и Radeon HD 5470 разница практически отсутствует. Интернет не работает заметно быстрее на дискретном GPU, как мы ни старались его заставить, а небольшая разница при масштабировании изображений в Photoshop вряд ли способна повлиять на выбор покупателя.

Разве что ещё в профессиональных CAD-программах и пакетах 3D-моделирования, от лица которых у нас выступал бенчмарк CINEBENCH R10, дискретное видеоядро получает более чем двукратное преимущество, по сравнению с интегрированным. Но многие ли пользователи CAD и DCC (Digital Content Creation) пакетов работают в таких приложениях на ноутбуках с их маленькими экранами и необходимостью подключать внешние мышь или графический планшет? Вряд ли.

Подводя выводы по тестам аппаратного ускорения воспроизведения видеоданных, отметим, что даже интегрированные мобильные видеоядра справляются с декодированием HD-видео довольно неплохо. Даже самый тяжелый видеоролик с максимальным качеством и битрейтом, который при программном декодировании вполне способен загрузить оба ядра CPU, на HD Graphics проигрывался плавно, с низкой загрузкой центрального процессора.

К сожалению, обнаружились некоторые проблемы с качеством аппаратно ускоренного видео у интегрированного ядра Intel. Вероятно, связанные с недоработками в драйверах. Но в остальном средний пользователь не должен ощутить разницу между дискретным и интегрированным видеоядрами при просмотре видео. Нужно добавить, что сейчас очень активно продвигаются возможности неграфических расчётов (GPGPU) на видеочипах (наши статьи по этой теме). И возможности интегрированных видеоядер Intel не могут ничего противопоставить решениям AMD и Nvidia, уже сейчас поддерживающих OpenCL, DirectCompute и CUDA (для Nvidia). Пока что популярность таких вычислений невысока и отсутствие такой поддержки не является недостатком, но в будущем положение может измениться, и дискретные решения AMD и Nvidia получат ещё одно преимущество.

Главный вывод нашего исследования очень простой, да и не слишком оригинальный. Если вам нужна быстрая 3D-графика в ноутбуке, игровая или профессиональная, то вам обязательно нужна дискретная видеокарта, и помощнее. Она обеспечит и высокую 3D-производительность, и приемлемое время автономной работы. Но если ваши потребности в 3D-графике ограничиваются трёхмерными пользовательскими интерфейсами и простенькими играми, то интегрированный в процессор или чипсет GPU подойдёт лучше. Так как ноутбуки со встроенными графическими решениями обычно продаются дешевле и способны дольше проработать от батареи в наиболее востребованных режимах. Более никакой значимой разницы нет.

Ну а для так и не определившихся потенциальных покупателей ноутбуков всегда остаётся возможность приобретения модели с гибридной графической подсистемой, сочетающей большинство достоинств интегрированной (длительное время при питании от батареи и невысокой нагрузке) и дискретной графики (высокая 3D-производительность). Впрочем, любые универсальные решения всегда заставляют нас платить больше, так или иначе.

www.ixbt.com

Интегрированная графика Intel

В таблице перечислены основные характеристики различных графических процессоров интегрированных в чипсеты Intel, а также центральных процессоров с интегрированной графикой.Графические процессоры, предназначенные для ноутбуков, обычно имеют несколько рабочих частот.

Все зависят от баланса между производительностью и временем работы батареи, которые конфигурирует пользователь. В нескольких случаях тактовая частота графического процессора ограничивается FSB ЦП и скоростью запоминающего устройства.В процессорах для ноутбука с интегрированной графикой частота GPU изменяется в зависимости от загрузки и рассеивания теплоты ЦП. Для таких ЦП указан минимальные и максимальные частоты.Ячейки со знаком вопроса, означают, что нет точной информации.

Чипсет/ЦП Market Графический процессор Частота GPU Пиксельные шейдеры Вершинные шейдеры DirectX
i810 ПК i740 ? ? ? ?
852GM Ноутбук ? 133 МГц ? ? ?
852GME Ноутбук ? 100, 133, 200, 250 или 266 МГц ? ? ?
852GMV Ноутбук ? 133 МГц ? ? ?
855GM Ноутбук ? 100, 133 или 200 МГц ? ? ?
855GME Ноутбук ? 100, 133 или 200 МГц ? ? ?
865G ПК ? 266 МГц ? ? ?
865GV ПК ? 266 МГц ? ? ?
910GL ПК GMA 900 333 МГц 4 0 9.0
910GML Ноутбук GMA 900 133 или 160/166 МГц 4 0 9.0
910GMLE Ноутбук GMA 900 133 или 160/166 МГц 4 0 9.0
915G ПК GMA 900 333 МГц 4 0 9.0
915GL ПК GMA 900 333 МГц 4 0 9.0
915GM Ноутбук GMA 900 133, 160/166, 190/200 или 333 МГц 4 0 9.0
915GME Ноутбук GMA 900 133, 160/166 или 333 МГц 4 0 9.0
915GMS Ноутбук GMA 900 133 или 160 МГц 4 0 9.0
915GV ПК GMA 900 333 МГц 4 0 9.0
940GML Ноутбук GMA 950 166 МГц 4 0 9.0
943GML Ноутбук GMA 950 200 МГц 4 0 9.0
945G ПК GMA 950 400 МГц 4 0 9.0
945GC ПК GMA 950 400 МГц 4 0 9.0
945GM Ноутбук GMA 950 250 МГц 4 0 9.0
945GME Ноутбук GMA 950 250 МГц 4 0 9.0
945GMS Ноутбук GMA 950 166 МГц 4 0 9.0
945GSE Ноутбук GMA 950 166 МГц 4 0 9.0
945GT Ноутбук GMA 950 400 МГц 4 0 9.0
945GU Ноутбук GMA 950 133 МГц 4 0 9.0
945GZ ПК GMA 950 400 МГц 4 0 9.0
946GZ ПК GMA 3000 400 МГц 4 0 9.0
GL960 Ноутбук GMA X3100 267, 320 или 400 МГц 8 Объединены 10
GLE960 Ноутбук GMA X3100 267, 320 или 400 МГц 8 Объединены 10
Q963 ПК GMA 3000 400 МГц 8 0 9.0c
Q965 ПК GMA 3000 400 МГц 8 0 9.0c
G965 ПК GMA X3000 667 МГц 8 Объединены 9.0c
GM965 Ноутбук GMA X3100 See Table 2 8 Объединены 10
GME965 Ноутбук GMA X3100 See Table 2 8 Объединены 10
G31 ПК GMA 3100 400 МГц 2 0 9.0
G33 ПК GMA 3100 400 МГц 2 0 9.0
Q33 ПК GMA 3100 400 МГц 2 0 9.0
G35 ПК GMA X3500 667 МГц 8 Объединены 10
Q35 ПК GMA 3100 400 МГц 2 0 9.0
GL40 Ноутбук GMA 4500MHD 400 МГц 10 Объединены 10
GS40 Ноутбук GMA 4500MHD 400 МГц 10 Объединены 10
G41 ПК GMA X4500 800 МГц 10 Объединены 10
B43 ПК GMA 4500 400 МГц 10 Объединены 10
G43 ПК GMA X4500 800 МГц 10 Объединены 10
Q43 ПК GMA 4500 400 МГц 10 Объединены 10
G45 ПК GMA X4500 800 МГц 10 Объединены 10
GM45 Ноутбук GMA 4500MHD 500 или 533 МГц 10 Объединены 10
GS45 Ноутбук GMA 4500MHD ? 10 Объединены 10
Q45 ПК GMA 4500 400 МГц 10 Объединены 10
Atom D410 Ноутбук GMA 3150 400 МГц 2 0 9.0
Atom D510 Ноутбук GMA 3150 400 МГц 2 0 9.0
Atom N4xx Ноутбук GMA 3150 200 МГц 2 0 9.0
Atom Z6xx Ноутбук GMA 600 400 МГц 4 Объединены 9.0c
UL11L Ноутбук GMA 500 100 МГц 4 Объединены 9.0c
US15L Ноутбук GMA 500 200 МГц 4 Объединены 9.0c
US15W Ноутбук GMA 500 200 МГц 4 Объединены 9.0c
Pentium G6950 ПК GMA HD 533 МГц 12 Объединены 10
Core i3-xxxE Ноутбук GMA HD От 500 до 667 МГц 12 Объединены 10
Core i3-xxxM Ноутбук GMA HD От 500 до 667 МГц 12 Объединены 10
Core i3-xxxUM Ноутбук GMA HD От 166 до 500 МГц 12 Объединены 10
Core i3-5xx ПК GMA HD 733 МГц 12 Объединены 10
Core i5-xxxM, 450M Ноутбук GMA HD От 500 до 766 МГц 12 Объединены 10
Core i5-xxxUM Ноутбук GMA HD От 166 до 500 МГц 12 Объединены 10
Core i5-6×0 ПК GMA HD 733 МГц 12 Объединены 10
Core i5-6×1 ПК GMA HD 900 МГц 12 Объединены 10
Core i7-6xxE Ноутбук GMA HD От 500 до 766 МГц 12 Объединены 10
Core i7-6xxLM Ноутбук GMA HD От 266 до 566 МГц 12 Объединены 10
Core i7-6xxM Ноутбук GMA HD От 500 до 766 МГц 12 Объединены 10
Core i7-6xxUM Ноутбук GMA HD От 166 до 500 МГц 12 Объединены 10

.

FSB Память GM965 and GME965
533 МГц DDR2-533 267, 320 или 400 МГц
667 МГц DDR2-533 267 или 333 МГц
667 МГц DDR2-667 250, 333, 400 или 500 МГц
800 МГц DDR2-533 267, 320 или 400 МГц
800 МГц DDR2-667 250, 333, 400 или 500 МГц

.

FSB Память GS45
800 МГц 667 МГц 333 или 500 МГц
800 МГц 800 МГц 320 или 533 МГц
1,066 МГц 667, 800 или 1,066 МГц 533 МГц

hardwareguide.ru


Смотрите также